CS 457 – Lecture 16 Global Internet - BGP Spring 2012.

Slides:



Advertisements
Similar presentations
CPSC Network Layer4-1 IP addresses: how to get one? Q: How does a host get IP address? r hard-coded by system admin in a file m Windows: control-panel->network->configuration-
Advertisements

TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_b Subnetting,Supernetting, CIDR IPv6 Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
Introduction 1-1 1DT066 Distributed Information System Chapter 4 Network Layer.
Announcement r Recitation tomorrow on Project 2 r Midterm Survey at the end of this class.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
The Network Layer Chapter 5. The IP Protocol The IPv4 (Internet Protocol) header.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 5 The Network Layer.
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
NAT: Network Address Translation local network (e.g., home network) /24 rest of Internet Datagrams.
Network Layer Overview and IP
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
12 – NAT, ICMP, IPv6 Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Computer Networks The Network Layer
4: Network Layer4a-1 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 4 Network Layer.
Network Layer Lecture # 2 MAHS. 4: Network Layer 4b-2 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables!
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
CS 5565 Network Architecture and Protocols
12 – IP, NAT, ICMP, IPv6 Network Layer.
CS 3214 Computer Systems Godmar Back Lecture 24 Supplementary Material.
1 NAT Network Address Translation Motivation for NAT To solve the insufficient problem of IP addresses IPv6 –All software and hardware need to be updated.
Network Layer4-1 DHCP: Dynamic Host Configuration Protocol Goal: allow host to dynamically obtain its IP address from network server when it joins network.
1DT066 Distributed Information System Chapter 4 Network Layer.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
CIS 3360: Internet: Network Layer Introduction Cliff Zou Spring 2012.
1 Chapter 4: Network Layer r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Hierarchical routing.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Router Architecture Overview
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
1 Network Layer Lecture 16 Imran Ahmed University of Management & Technology.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
EEC-484/584 Computer Networks Lecture 10 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
1 Network Layer Lecture 11 Imran Ahmed University of Management & Technology.
4: Network Layer4b-1 IPv6 r Initial motivation: 32-bit address space completely allocated by r Additional motivation: m header format helps speed.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Wide Area Networks and Internet CT1403 Lecture-7: Internet Network Layer (Part-2) 1.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Advance Computer Networks Lecture#11 Instructor: Engr. Muhammad Mateen Yaqoob.
CS 5565 Network Architecture and Protocols Godmar Back Lecture 14.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
4: Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer 4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note.
12 – IP, NAT, ICMP, IPv6 Network Layer.
Supplementary Material
Network Address Translation
Chapter 4: Network Layer
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 4: Network Layer
Supplementary Material
CS 1652 Jack Lange University of Pittsburgh
Overview The Internet (IP) Protocol Datagram format IP fragmentation
DHCP: Dynamic Host Configuration Protocol
32 bit destination IP address
Chapter 4: outline 4.1 Overview of Network layer data plane
Presentation transcript:

CS 457 – Lecture 16 Global Internet - BGP Spring 2012

IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: –header format helps speed processing/forwarding –header changes to facilitate QoS IPv6 datagram format: –fixed-length 40 byte header –no fragmentation allowed

IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer overhead

IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

Other Changes from IPv4 Checksum: removed entirely to reduce processing time at each hop Options: allowed, but outside of header, indicated by “Next Header” field ICMPv6: new version of ICMP –additional message types, e.g. “Packet Too Big” –multicast group management functions

Transition From IPv4 To IPv6 Not all routers can be upgraded simultaneous –no “flag days” –How will the network operate with mixed IPv4 and IPv6 routers? Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Tunneling A B E F IPv6 tunnel Logical view: Physical view: A B E F IPv6 C D IPv4 Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Src:B Dest: E Flow: X Src: A Dest: F data Src:B Dest: E A-to-B: IPv6 E-to-F: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4

NAT: Network Address Translation Motivation: local network uses just one IP address as far as outside world is concerned: –no need to be allocated range of addresses from ISP: - just one IP address is used for all devices –can change addresses of devices in local network without notifying outside world –can change ISP without changing addresses of devices in local network –devices inside local net not explicitly addressable, visible by outside world (a security plus).

NAT: Network Address Translation 16-bit port-number field: –60,000 simultaneous connections with a single LAN-side address! NAT is controversial (books term): –NAT is evil (protocol designer and security term) –routers should only process up to layer 3 –violates end-to-end argument NAT possibility must be taken into account by app designers, eg, P2P applications –address shortage should instead be solved by IPv6

NAT: Network Address Translation local network (e.g., home network) /24 rest of Internet Datagrams with source or destination in this network have /24 address for source, destination (as usual) All datagrams leaving local network have same single source NAT IP address: , different source port numbers

NAT: Network Address Translation Implementation: NAT router must: –outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination addr. –remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair –incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation S: , 3345 D: , : host sends datagram to , 80 NAT translation table WAN side addr LAN side addr , , 3345 …… S: , 80 D: , S: , 5001 D: , : NAT router changes datagram source addr from , 3345 to , 5001, updates table S: , 80 D: , : Reply arrives dest. address: , : NAT router changes datagram dest addr from , 5001 to , 3345