Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

68th OSU International Symposium on Molecular Spectroscopy TH08
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Laboratory and Possible Interstellar Detection of trans-Methyl Formate MATT T. MUCKLE, JUSTIN L. NEILL, DANIEL P. ZALESKI, and BROOKS H. PATE University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Rotational spectroscopy of newly detected atmospheric ozone depleters: CF 3 CH 2 Cl, CF 3 CCl 3, and CFClCCl 3 Zbigniew Kisiel, Ewa Białkowska-Jaworska,
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Barney Ellison — ISMS, RB05
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Structure of the SEVOFLURANE-BENZENE complex as determined by CP-FTMW spectroscopy Nathan A. Seifert, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate.
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
International Symposium on Molecular Spectroscopy
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd, P.O. Box , Charlottesville, VA I. Peña, C. Perez, J.L. Alonso Grupo de Espectroscopía Molecular (GEM), Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E Valladolid, Spain

High-Resolution Spectroscopy of Solvated Organic Molecules (H 2 O) 3-6 : Saykally group (THz tunneling) C.J. Gruenloeh et al., Science 276, 1678 (1997). Ch. Janzen et al., J. Chem. Phys. 110, 9898 (1999). B. Ouyang, T.G. Starkley, B.J. Howard, J. Phys. Chem. A 111, 6165 (2007). D. Priem, T.-K. Ha, A. Bauder, J. Chem. Phys. 113, 169 (2000). S. E. Novick, Bibliography of Rotational Spectra of Weakly Bound Complexes, (2010). Electronic updates are available on the web at Water cubes: -benzene-(H 2 O) 8 : Gruenloeh et al. -phenol-(H 2 O) 7,8 : Janzen et al. (UV/IR) Microwave studies: -trifluoroacetic acid-(H 2 O) 3 : Ouyang et al. -formic acid-(H 2 O) 2 : Priem et al.

Experimental Methods: Chirped-Pulse FTMW Spectrometer 1.23 million averages (59 h), 300 W TWTA 2 nozzles, 10 FIDs per valve injection He or Ne backing gas (4 atm) G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, and B.H. Pate, Rev. Sci. Instrum. 79 (2008) L. Alvarez-Valtierra, S.T. Shipman, J.L. Neill, B.H. Pate, A. Lesarri, ISMS 2008, WF12. T. Emilsson, H.S. Gutowsky, G. de Oliveira, C.E. Dykstra, J. Chem. Phys. 112, 1287 (2000). Tools for structural analysis: -10% H 2 18 O sample to observe isotopically substituted species -CP-FTMW Stark effect measurement (60 V/cm) calibrated with trifluoropropyne 1 st -order shifts

x50 x500 x5000 CP-FTMW Spectrum Dense spectrum—microwave-microwave double resonance spectroscopy used extensively

1966 lines detected with signal to noise > 3: lines (61%) still unassigned x230 CP-FTMW Spectrum

 -propiolactone ExperimentalAb InitioPct. Error A (MHz) (13) % B (MHz) (5) % C (MHz) (4) %  A (D) 3.675(10) %  B (D) 2.01(5) %  C (D)  total (D) % Ab Initio calculations: Gaussian 03W, mp2/ g(d,p) (all structures) Spectral fits: SPFIT/SPCAT, PIFORM (PROSPE, Z. Kisiel, QSTARK (PROSPE) Figures: PMIFST (PROSPE) N. Kwak, J.H. Goldstein, J.W. Simmons, J. Chem. Phys. 25, 1203 (1956). Z. Chen and J. van Wijngaarden, J. Mol. Spectrosc. 257, 164 (2009). Large circles: ab initio structures Small circles: substitution coordinates Avg. deviation: Å CP-FTMWKwak et al.  A (D) 3.675(10)3.67(4)  B (D) 2.01(5)2.00(2)

 -propiolactone-H 2 O ExperimentalAb InitioPct. Error A (MHz) (20) % B (MHz) (5) % C (MHz) (5) %  A (D) (11) %  B (D) 2.543(23) %  C (D) [0] (fixed)  total (D) % O deviation: Å No c-type transitions observed; searched for tunneling gap <500 MHz

 -propiolactone-(H 2 O) 2 ExperimentalAb InitioPct. Error A (MHz) (3) % B (MHz) (4) % C (MHz) (3) %  A (D) 2.160(10) %  B (D) 1.544(23) %  C (D) 0.330(3) %  total (D) 2.676(25) % average O deviation: Å

 -propiolactone-(H 2 O) 3 ExperimentalAb InitioPct. Error A (MHz) (6) % B (MHz) (6) % C (MHz) (5) %  A (D) 2.357(5) %  B (D) 0.60(13) %  C (D) 0.12(8) %  total (D) 2.44(15) %  14.28°10.3°-4.0°  87.18°81.2°-5.9° Experimental A (MHz) (18) B (MHz) (12) C (MHz) (12)  A (D) (24)  B (D) ---  C (D) 1.773(8)  total (D) 1.975(8) ~5x weaker than above spectrum No structural assignment average O deviation: Å

 -propiolactone-(H 2 O) 4 ExperimentalAb InitioPct. Error A (MHz) (7) % B (MHz) (4) % C (MHz) (5) %  A (D) (9) %  B (D) 3.785(11) %  C (D) 2.667(7) %  total (D) 4.657(13) % ExperimentalAb InitioPct. Error A (MHz) (10) % B (MHz) (9) % C (MHz) (8) %  A (D) (15) %  B (D) 4.215(19) %  C (D) 2.009(7) %  total (D) 4.772(20) % average O deviation: Å 2:1 intensity ratio E rel = 70.4 cm -1

 -propiolactone-(H 2 O) 4 -(H 2 O) 4 mininum: free protons are “udud” around the ring -BPL-(H 2 O) 4 : free protons are “uudd” around the ring--less stable by 325 cm -1 tunneling quenched by complexation -two structures differ only by the direction of H-bonding around the ring J.D. Cruzan, M.R. Viant, M.G. Brown, R.J. Saykally, J. Phys. Chem. A 101, 9022 (1997). M. Schütz, W. Klopper, H.-P. Lüthi, J. Chem. Phys. 103, 6114 (1995).

 -propiolactone-(H 2 O) 5 ExperimentalAb InitioPct. Error A (MHz) (8) % B (MHz) (5) % C (MHz) (5) % (B/A)2(B/A) (C/A)2(C/A) Discrepancy in relative b/c dipoles

Conclusions All observed structures cool to minimum-energy configurations (rather than sequential addition) Competition/compromise between water-molecule and water-water interactions Importance of isotopic substitution, Stark effect measurements in structure determination of large water clusters -substitution structures and dipole moments agree very well with ab initio values -Use of isotopic assignments to drive ab initio (rather than the reverse)

Acknowledgements Funding National Science Foundation Chemistry CHE CRIF:ID CHE Miniesterio de Ciencia y Tecnología (Grant CTQ ) Junta de Castilla y León, Fondo Social Europeo (Grant VA012C05)

ExperimentalAb InitioError  (D) %  28.7°29.0°0.3°  90° 0°  PL Dipole Moment Errors ExperimentalAb InitioError  (D) %  68.57°73.2°4.6°  90°76.2°-13.8°  PL-H 2 O ExperimentalAb InitioError  (D) %  35.56°33.8°-1.7°  82.92°82.5°-0.4°  PL-(H 2 O) 2 ExperimentalAb InitioError  (D) %  14.28°10.3°-4.0°  87.18°81.2°-5.9°  PL-(H 2 O) 3 ExperimentalAb InitioError  (D) %  82.44°82.1°-0.3°  55.07°53.3°-1.8°  PL-(H 2 O) 4 (stronger) ExperimentalAb InitioError  (D) %  76.85°73.5°-3.3°  65.10°65.0°-0.1°  PL-(H 2 O) 4 (weaker)

Experimental Methods: MW-MW Double Resonance Spectroscopy CP-FTMW-MW Double ResonanceCavity FTMW-MW Double Resonance

 -propiolactone-(H 2 O) 5 (H 2 O) 5 : slightly puckered, has an “uudud” orientation of the water pentamer BPL-(H 2 O) 5 : similar structure; internal tunneling/pseudorotation quenched by complexation K. Liu, M.G. Brown, J.D. Cruzan, R.J. Saykally, J. Phys. Chem. A 101, 9011 (1997).