Coalescent Theory & Population Genetics applications Frantz Depaulis Pwd:

Slides:



Advertisements
Similar presentations
Neutral Theory of Molecular Evolution most base substitutions are selectively neutral drift dominates evolution at the molecular level Under drift, rate.
Advertisements

Genealogies of time structured data, an application on cave bear ancient DNA Frantz Depaulis Ludovic Orlando Catherine Hannï UMR 5534 Centre de Génétique.
The Five Factors of Evolution
Sarah Cohen Boulakia, Christine Froidevaux, Emmanuel Waller Bernard Labedan Université Paris Sud, Orsay Laboratoire de Recherche en Informatique, UMR CNRS.
Sampling distributions of alleles under models of neutral evolution.
Change in frequency of the unbanded allele (q) as a function of q for island populations. Equilibrium points a)Strong selection for q, little migration.
Atelier INSERM – La Londe Les Maures – Mai 2004
Molecular evolution:   how do we explain the patterns of variation observed in DNA sequences? how do we detect selection by comparing silent site substitutions.
 Evolution is the Change in the genetic material of a population of organisms from one generate to the next.  The Emergence of new species happen due.
From population genetics to variation among species: Computing the rate of fixations.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Molecular Evolution Course #27615 Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence.
OEB 192 – Mutation rate & population size I.
Modeling evolutionary genetics Jason Wolf Department of ecology and evolutionary biology University of Tennessee.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Molecular Evolution Course #27615 Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence.
Simulating Gene Flow from Ocean Flow? James Watson, UCSB.
Genome Evolution © Amos Tanay, The Weizmann Institute Genome evolution Lecture 2: population genetics I: models and drift.
- any detectable change in DNA sequence eg. errors in DNA replication/repair - inherited ones of interest in evolutionary studies Deleterious - will be.
Neutral Theory: From molecular evolution to community ecology Fangliang He Department of Renewable Resources University of Alberta.
Genetic Approximate Matching of Attributed Relational Graphs Thomas Bärecke¹, Marcin Detyniecki¹, Stefano Berretti² and Alberto Del Bimbo² ¹ Université.
Let’s review for the final! No points, just review.
Population genetics. Population genetics concerns the study of genetic variation and change within a population. While for evolving species there is no.
Calculating branch lengths from distances. ABC A B C----- a b c.
End Show 16-2 Evolution as Genetic Change Slide 1 of 40 Copyright Pearson Prentice Hall Genetic Drift What is genetic drift?
Population Genetics The Study of how Populations change over time.
Evolution of Aging Katy Nicholson and Coco Shea. Why do organisms age?
Selectionist view: allele substitution and polymorphism
Hickory Dickory Dock: Understanding the Molecular Clock Felisa Wolfe ERUPT: Biocomplexity Seminar 28 Feb 2003.
The Interactions of Selection With Genetic Drift Can Be Complicated Because the Changes in p Induced By Drift are Random and Ever-Changing Three Important.
11 Stochastic age-structured modelling: dynamics, genetics and estimation Steinar Engen, Norwegian University of Science and Technology Abstract In his.
Genome Evolution. Amos Tanay 2010 Genome evolution Lecture 4: population genetics III: selection.
The plant of the day Pinus longaevaPinus aristata.
Restriction enzyme analysis The new(ish) population genetics Old view New view Allele frequency change looking forward in time; alleles either the same.

By Bryce Perry and Cecil Brown
亚洲的位置和范围 吉林省白城市洮北区教师进修学校 郑春艳. Q 宠宝贝神奇之旅 —— 亚洲 Q 宠快递 你在网上拍的一套物理实验器材到了。 Q 宠宝贝打电话给你: 你好,我是快递员,有你的邮件,你的收货地址上面 写的是学校地址,现在学校放假了,能把你家的具体 位置告诉我吗? 请向快递员描述自己家的详细位置!
BME 130 – Genomes Lecture 20 Population Genomics I.
Lecture 6 Genetic drift & Mutation Sonja Kujala
Chapter 16 Section 1 Genes and Variation
The neutral theory of molecular evolution
This presentation was originally prepared by
Variety of mating systems
Chapter 14 Microevolution in Modern Human Populations
Evolution & Natural Selection
بسم الله الرحمن الرحیم آب منشا حيات
Evolutionary Biology David Shiuan National Dong Hwa University
Is the CFTR allele maintained by mutation/selection balance?
Chapter 20 Molecular Evolution
Is the CFTR allele maintained by mutation/selection balance?
Speciation: Down the bottleneck?
Freshman Biology Room S218
Lecture 2: Basic Population Genetics
Mechanisms of Evolution
The coalescent with recombination (Chapter 5, Part 1)
15.2 Critical Info Explain how the scientific theory of evolution is supported by the fossil record, comparative anatomy, comparative embryology, biogeography,
Evolution 2 Practice Test
Chapter 20 Molecular Evolution
Copyright © 2010 Academic Press Inc.
Chapter 1 Basic Genetics
Chapter 20 Molecular Evolution
Around the room Orders of operations.
Biology Major Field Assessment Public Report
Parallel evolution of coding sequences above neutral expectation.
Evolution by Genetic Drift : Main Points (p. 231)
Dr. Xijiang Yu Shandong Agricultural University
Natural selection in populations & Other mechanisms of Evolution
Unit Vocabulary Natural selection allelic frequency adaptation gene pool fitness isolation (all) structures (3) ancestor embryology mutation variation molecular.
Evolution & Biological Classification
EVOLUTION 1 PRACTICE TEST
Hardy-Weinberg Lab Data
Evolution by Genetic Drift : Main Points (p. 231)
Presentation transcript:

Coalescent Theory & Population Genetics applications Frantz Depaulis Pwd: M1ENSCOAL Laboratoire Ecologie et Evolution, CNRS-UMR 7625 Université Paris 6- ENS room 426

Outline Reminder Coalescence Mutations/models Perturbations, applications

Neutral theory of molecular evolution (Kimura 1969): the neutral model as a reference Mutations Occurrence Fate avantageous rarefixed deleteriousfrequenteliminated neutralfrequent drift until fixation or loss -reminder-

Wright Fisher Neutral model Assumptions Selective neutrality (N e s <<1) Demography - Isolated panmictic Population, - Constant size N - Poisson Distribution of offspring P (1) -reminder-

Effectif efficace : définition On définit la taille efficace (notée N e ) d’une population comme étant la taille d’une population « idéale » de Wright-Fisher où la dérive génétique aurait la même intensité (**) que dans la population (ou bien le modèle de population) qui nous intéresse ** même taux de dérive, même augmentation de consanguinité, même augmentation de variance de fréquences alléliques entre populations, etc. -reminder-

Relationships among 10 individuals over 15 generations GenerationsGenerations individuals # genes -Coalescence-

the same, but permuted GenerationsGenerations individuals # genes -Coalescence-

Descent and extinction of a lineage GenerationsGenerations individuals # genes -Coalescence-

Genealogy of 3 individuals: Regarder le processus de dérive en « remontant le temps » jusqu’à l’ancêtre commun d’un échantillon de gènes GenerationsGenerations individuals#genes -Coalescence-

Genealogy of a gene sample gene sample ancestral lineage coalescence= common ancestor Most recent common ancestor (MRCA) -Coalescence-

Kingman (1980, 1982)

-Coalescence-

Coalescent Tree ab cde f Most recent common ancestor of the sample (MRCA) sample of “genes” / of individuals Common ancestor (CA) neutral mutations T C C G C G A A -Coalescence-

Coalescent times 2 genes p 2 =P( common ancestry in t -1)= 1/2N n genes p n =P ( common ancestry at t -1)= (n x (n -1)/2) x 1/2N P ( common ancestry t generations ago ) = (1-p) t -1 x p Geometric distribution (discrete generations) #p e (-pt ) Exponential distribution (continuous time) p small, t large t t-1 1/2N N... -Coalescence- Diploïde (2n) => 2N genes

-Coalescence-

Effectif efficace de consanguinité Dans le modèle de Wright-Fisher, la probabilité de coalescence en une génération est égale à 1/N. On peut donc définir une taille efficace comme l’inverse de la probabilité de coalescence en une génération (Ewens, 1982). C’est une taille efficace de consanguinité, et qui est instantanée. Au contraire, une taille efficace asymptotique peut être définie, qui décrit le taux de coalescence de lignées de gènes dans un passé lointain (égale à 1/N dans le modèle de Wright-Fisher) Cette taille efficace asymptotique (de consanguinité, de coalescence) est équivalente à la taille efficace de valeur propre, qui repose sur une description complète des fréquences alléliques dans une population (la valeur propre de la matrice qui décrit les changements de fréquence détermine l’approche de l’état d’équilibre) -Coalescence-

1°) Ages of the nodes Constructing coalescents, cdefba t3t3 p =1/2N Exp( p ) t1t1 t2t2 t4t4 t5:t5: additional assumption: n << N -Coalescence-

gene sample Topology of the tree 2°) abcdef MRCA common ancestor (CA) t1t1 t2t2 t3t3 t4t4 t5:t5: Constructing- deconstructing coalescents -Coalescence- Hudson’s animator:

Mutations and associated models -Mutations-

AA A A neutral mutations G T C C G C A 3°) uniform distribution of mutations gene sample Topology of the tree 2°) T C G A C G C T neutral distribution of sequence polymorphism abcdef MRCA common ancestor (CA) t1t1 t2t2 t3t3 t4t4 t5:t5: times Constructing- deconstructing coalescents S : P ( T Tot x  )  =4N e µ -Mutations-

Mutational, sequence data: infinite site model (ISM) - No recombination - Independent mutations - Constant mutation rate µ Along the sequence Across time - Each mutation affects a new nucleotide site Infinite(ly many) site model: sequences, SNP’s -Mutations-

GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT f T C T AC T G A T G C Alignment of polymorphic sites: G T G n =7 S =15 -Mutations-

Frequency spectrum of mutations f i : Number of polymorphic sites Number of occurrences in a sample Neutral predictions -Mutations- Watterson’s (1975) estimator  =4N e  * *: Tajima (1983)

f f GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT CTCT → TCTC → T C T AC T G A T G C Alignment of polymorphic sites: non oriented mutations G T G n =7 S =15 -Mutations-

Frequency spectrum of mutations f i : number of occurrences in a sample Number of polymorphic sites -Mutations-

GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT f CTCT → Alignment of polymorphic sites: orienting mutations with an outgroup f TCTC → GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT T C o.g.GCGCGCGAACCCATT C -Mutations-

Infinite(ly many) allele model: allozymes, one site (locus) (microsatellites) Each mutation gives rise to a new type/allele on a locus T A C C G C G T G GG CC A A A T C C A T -Mutations-

The “stepwise mutation” model (SMM) is appropriate for microsatellites. When a mutation occurs, the new mutation length depends on the existing length. In the simplest case of the “single” SMM, illustrated in the next slide, the new length = old length +/- 1. Stepwise mutation model -Mutations-

Microsatellites GAGGCGTAGTAGTAGTAGTAGTAGTAGGCTCTA GAGGCGTAGTAGTAGTAGTAGTAGGCTCTA or GAGGCGTAGTAGTAGTAGTAGTAGTAGTAGGCTCTA Microsatellites mutate very fast (~1 change every 500 generations) Mutation events usually involve a gain or a loss of a single repeat unit -Mutations-

Recombination « simple » case: 2 haplotypes with 2 locus One possible Genealogy outcome Recombination Coalescence MRCA1 MRCA2 Past -Perturbations-

Ancestral Recombination Graph : example coalescence rate : n(n-1)/2 recombination rate : R n Recombination Coalescence n =2 n =3 n =2 n =2 ? MRCA Time Past -Perturbations-

Recombination Histories: Non-ancestral bridges -Perturbations-

systematic effects  Genealogy  Demographic  Selective Extinction-recolonisation, severe bottlenecks, population expansion severe hitchhiking Migration, population structure, moderate bottlenecks balanced polymorphism, moderate hitchhiking -Perturbations-

The neutral model, application = inference  Applications Molecular phylogeography Molecular ecology: Selective effects - balancing selection - directional selection, hitchhiking Demographic effects - Dispersion - bottlenecks/expansion - Distribution of the number of offsprings  Tool= the coalescent -Coalescence-

-Perturbations- Demographic change

-Perturbations-

(a) Constant population size (simulation case 3) (b) Population expansion,  = 3 (simulation case 2) KK -Perturbations-

Coalescent and bottlenecks t N P t = 1/2N t -Perturbations-

Time Coalescence Migration Coalescence Pop 1 Pop 2 -Perturbations- Population structure Coalescence 1/m Migration

-Perturbations-

______T_____*___C__ _G______A________G_ ACGTTTATGCAACGTCGAC 1°) an advantageous mutation appears 2°) Selection _G_______________G_ _________________G_ ______T____________ ______T_____*___C__ ACGTTTATGCAACGTCGAC ______T_____*___C__ 3°) Hitch-hiking effect: the advantageous mutation is fixed and variability is swept ACGTTTATGCAACGTCGAC Reference chromosomes population of chromosomes neutral mutations _G_______________G_ _________________G_ ______T____________ ______T_________C__ Selection: Hitch-hiking without recombination -Perturbations-

A Hitch-hiking without recombination: genealogy apparition of an advantageous mutation Few mutations at low frequency common ancestor T ****** T * A After hitch-hiking Neutral distribution of mutations in the sample T A C C G C G C C G AA C T T G A A neutral coalescent -Perturbations-

The effect of a selective sweep on the shape of the coalescent tree -Perturbations-

_G______A________G_ ACGTTTATGCAACGTCGAC 1°) an advantageous mutation appears 2°) Selection _G_______________G_ _________________G_ ______T____________ ______T_____*___C__ ACGTTTATGCAACGTCGAC _G______A___*___C__ ______T_____*___C__ 3°) Hitchhiking effect: several haplotypes remain ACGTTTATGCAACGTCGAC Reference chromosomes population of chromosomes neutral mutations _G_______________G_ _________________G_ ______T____________ ______T_________C__ hitchhiking with recombination _G______A___*___C__ -Perturbations-

hitchhiking with recombination: genealogy apparition of an advantageous mutation substantial number of high frequency mutations common ancestor ****** * After hitchhiking T A C C G C G C C G AA C T T G A A Neutral coalescent C G C G C G * recombination GGGG G Neutral distribution of mutations in the sample -Perturbations-

Frequency spectrum of mutations f i : Number of polymorphic sites Number of occurrence s in a sample Neutral predictionsSelective predictions -Perturbations-

/Background selection Charlesworth et al. 1993

Alternative hypotheses, overview S Neutral Moderate bottleneck /population structure Balanced selection hitchhiking with recombination Severe bottleneck, population expansion /local hitchhiking number of mutations perturbation -Perturbations- frequency class in excess intermediatehighlowNone

Gene genealogies / Coalescent theory Based on the standard Wright-Fisher neutral model Genealogical trees – backward – Intuitive – Economic * Sampling theory * Only generations where « events » occurred are considered -Coalescence- The coalescent= a simple and efficient framework to build make inference about selective and demographic history of populations

Acknowledgements –R. Vitalis –V. Castric –L. Chikki –S. Billiard –M. Schierup Oxf. Surv Evol Biol :1-44

Frequency spectrum of mutations f i : Number of polymorphic sites  =4N e  H=-HH=-H = 0= 0= 0= 0 = 0.05 = * Number of occurrence s in a sample (Fay and Wu Genetics 2000) -Misorientation-

f f C C T GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT GCCCGCGAATCCATT GCGTGCGATCCGATT GCGTACAATCCCGTC GTGTACAATCTCGAC GCGTGGAATCCCGTT CCGCGCGGTCCCATT o.g.GCGCGCGAACCCATTo.g.GCGCGCGAATCCATT TCTC → T T CTCT → T C pMpM Alignment of polymorphic sites: multiple hits and misorientation -Misorientation-

T A C C G C G C C G AA C TT G A A T A A C G T C C T C AA T T G A T C T A C C G C G C T G GG CC C G A A A A T Neutrality tests: simulations parameters ‡ : S =8 n =6 H = 2.13 H = simulations H {H { C C A T -tests- ‡ Hudson H density observed H : P = 0.03 * Distribution of simulated H