Matching Theory.

Slides:



Advertisements
Similar presentations
1 Stable Matching A Special Case of Stable Marriage.
Advertisements

Stable Matching Problems with Constant Length Preference Lists Rob Irving, David Manlove, Gregg OMalley University Of Glasgow Department of Computing Science.
Blah blah blah. Zoes shark Thanks to the conference artist Phoebe.
An Adjusted Matching Market: Adding a Cost to Proposing Joschka Tryba Brian Cross Stephen Hebson.
Piyush Kumar (Lecture 3: Stable Marriage) Welcome to COT5405.
Marriage, Honesty, & Stability N ICOLE I MMORLICA, N ORTHWESTERN U NIVERSITY.
Naveen Garg, CSE, IIT Delhi
Matching Markets Jonathan Levin Economics 136 Winter 2010.
Lecture 2: Greedy Algorithms II Shang-Hua Teng Optimization Problems A problem that may have many feasible solutions. Each solution has a value In maximization.
IMPOSSIBILITY AND MANIPULABILITY Section 9.3 and Chapter 10.
CS 886: Electronic Market Design Social Choice (Preference Aggregation) September 20.
Matching problems Toby Walsh NICTA and UNSW. Motivation Agents may express preferences for issues other than a collective decision  Preferences for a.
Improved Efficiency for Private Stable Matching Matthew Franklin, Mark Gondree, and Payman Mohassel University of California, Davis 02/07/07 - Session.
National Intern Matching Program. History Internship introduced around the turn of the 20 th century – A concentrated exposure to clinical medicine to.
Motivation: Condorcet Cycles Let people 1, 2 and 3 have to make a decision between options A, B, and C. Suppose they decide that majority voting is a good.
1 Discrete Structures & Algorithms Graphs and Trees: IV EECE 320.
Centralized Matching. Preview Many economic problems concern the need to match members of one group of agents with one or more members of a second group.
Stabile Marriage Thanks to Mohammad Mahdian Lab for Computer Science, MIT.
CSE 421 Algorithms Richard Anderson Lecture 2. Announcements Office Hours –Richard Anderson, CSE 582 Monday, 10:00 – 11:00 Friday, 11:00 – 12:00 –Yiannis.
A Longer Example: Stable Matching UNC Chapel HillZ. Guo.
Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising.
Chapter 10: Iterative Improvement Simplex Method The Design and Analysis of Algorithms.
The Core MIT , Fall Lecture Outline  Coalitional Games and the Core The non-transferable utility ( “ NTU ” ) formulation The transferable.
The Stable Marriage Problem
1 Stable Matching Problem Goal. Given n men and n women, find a "suitable" matching. n Participants rate members of opposite sex. n Each man lists women.
L3 #1 The Hospitals / Residents Problem and Some Extensions David Manlove University of Glasgow Department of Computing Science Supported by EPSRC grant.
The Mathematics Of 1950’s Dating: Who wins the battle of the sexes? Adapted from a presentation by Stephen Rudich.
The Mathematics Of 1950’s Dating: Who wins the battle of the sexes? Presentation by Shuchi Chawla with some modifications.
Introduction to Matching Theory E. Maskin Jerusalem Summer School in Economic Theory June 2014.
Chapter 14: Fair Division Part 5 – Defining Fairness.
Stable Matchings a.k.a. the Stable Marriage Problem
Great Theoretical Ideas in Computer Science.
Lecture 7 Course Summary The tools of strategy provide guiding principles that that should help determine the extent and nature of your professional interactions.
1 The Stable Marriage Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij.
Lecture 23: Stable Marriage ( Based on Lectures of Steven Rudich of CMU and Amit Sahai of Princeton) Shang-Hua Teng.
Stable Matching Lecture 7: Oct 3. Matching A B C DE Boys Girls Today’s goal: to “match” the boys and the girls in a “good” way.
Stable Marriages (Lecture modified from Carnegie Mellon University course Great Theoretical Ideas in Computer Science)
Design & Co-design of Embedded Systems Final Project: “The Match Maker” Second Phase Oral Presentation Safa S. Mahmoodian.
The Stable Marriage Problem
Great Theoretical Ideas in Computer Science for Some.
Incentive compatibility in 2-sided matching markets
Matching Lecture 19: Nov 23.
Sep 29, 2014 Lirong Xia Matching. Report your preferences over papers soon! –deadline this Thursday before the class Drop deadline Oct 17 Catalan independence.
Fair Shares.
Graph Algorithms Maximum Flow - Best algorithms [Adapted from R.Solis-Oba]
CAREER SKILLS: JOB APPLICATION Mr. Toth 3/15/2010 – 3/16/2010.
AEA Continuing Education in Game Theory Avinash Dixit and David Reiley Session 6: Market Design and Algorithms David Reiley Yahoo! Research January 2011.
CSCI 256 Data Structures and Algorithm Analysis Lecture 2 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Market Design and Analysis Lecture 2 Lecturer: Ning Chen ( 陈宁 )
18.1 CompSci 102 Today’s topics 1950s TV Dating1950s TV Dating.
Algorithms used by CDNs Stable Marriage Algorithm Consistent Hashing.
Dating Advice from Mathematics
Matching Boys Girls A B C D E
Cybernetica AS & Tartu University
Stable Matching.
Stable Marriage Problem
Chapter 10 Iterative Improvement
The Stable Marriage Problem
Multi-Item Auctions.
CSE 421: Introduction to Algorithms
School Choice and the Boston Mechanism
S. Raskhodnikova; based on slides by K. Wayne
Matching Lirong Xia March 8, Matching Lirong Xia March 8, 2016.
Richard Anderson Autumn 2006 Lecture 1
Discrete Math for CS CMPSC 360 LECTURE 9 Last time: Strong induction
Chapter 1 Introduction: Some Representative Problems
Matching and Resource Allocation
Richard Anderson Winter 2019 Lecture 1
Piyush Kumar (Lecture 3: Stable Marriage)
Presentation transcript:

Matching Theory

Two-Sided Matching Statement of the problem Examples Two sides of the market to be matched. Participants on both sides care about to whom they are matched. Money can’t be used to determine the assignment. Examples Marriage & dating markets Fraternity/sorority rush School choice programs College admissions Medical residencies Judicial clerkships Military postings Job assignments in firms

Marriage Model Participants Preferences Set of men M, with typical man m M Set of women W, with typical woman w  W. One-to-one matching: each man can be matched to one woman, and vice-versa. Preferences Each man has strict preferences over women, and vice versa. A woman w is acceptable to m if m prefers w to being unmatched.

Matching A matching is a set of pairs (m,w) such that each individual has one partner. If the match includes (m,m) then m is unmatched. A matching is stable if Every individual is matched with an acceptable partner. There is no man-woman pair, each of whom would prefer to match with each other rather than their assigned partner. If such a pair exists, they are a blocking pair and the match is unstable.

Example 1 Two men m,m’ and two women w,w’ m prefers w to w’ w prefers m to m’ w’ prefers m’ to m Possible match: (m,w’) and (m’,w) Unique stable match: (m,w) and (m’,w’)

Example 2 Two men m,m’ and two women w,w’ m prefers w to w’ w prefers m’ to m w’ prefers m to m’ Two stable matches {(m,w),(m’,w’)} and {(m,w’),(m’,w)} First match is better for the men, second for the women. Is there always a stable match? How to find one?

Deferred Acceptance Men and women rank all potential partners Algorithm Each man proposes to highest woman on his list Women make a “tentative match” based on their preferred offer, and reject other offers, or all if none are acceptable. Each rejected man removes woman from his list, and makes a new offer. Continue until no more rejections or offers, at which point implement tentative matches. This is the “man-proposing” version of the algorithm; there is also a “woman proposing” version.

DA in pictures

Stable matchings exist Theorem. The outcome of the DA algorithm is a stable one-to-one matching (so a stable match exists). Proof. Algorithm must end in a finite number of rounds. Suppose m, w are matched, but m prefers w’. At some point, m proposed to w’ and was rejected. At that point, w’ preferred her tentative match to m. As algorithm goes forward, w’ can only do better. So w’ prefers her final match to m. Therefore, there are NO BLOCKING PAIRS.

Example Preferences of men and women m1: w1 > w2 > w3 w1: m2 > m3 > m1 m2: w3 > w2 > w1 w2: m2 > m3 > m1 m3: w3 > w1 > w2 w3: m2 > m1 > m3 Find a stable matching.

Aside: the roommate problem Suppose a group of students are to be matched to roommates, two in each room. Example with four students A prefers B>C>D B prefers C>A>D C prefers A>B>D No stable match exists: whoever is paired with D wants to change and can find a willing partner. So stability in matching markets is not a given, even if each match involves just two people.

Why stability? Stability seems to explain at least in part why some mechanisms have stayed in use. If a market results in stable outcomes, there is no incentive for re-contracting. We will see in the next class that the clearinghouses using the Deferred Acceptance algorithm have fared pretty well. Other clearinghouses that use unstable matching mechanisms seem to have failed more often. But does one need an organized clearinghouse?

Decentralized market What if there is no clearinghouse? Men make offers to women Women consider their offers, perhaps some accept and some reject. Men make further offers, etc.. What kind of problems can arise? Maybe w holds m’s offer for a long time, and then rejects it, but only after market has cleared. Maybe m makes exploding offer to w and she has to decide before knowing her other options. No guarantee the market will be “orderly”…

Example: clinical psychology Clinical psychologists are employed as interns after they complete their doctoral degrees. About 500 sites offer 2,000 positions each year. Clears with one day market. On selection day, market opens at 9 am, closes at 4 pm. While market is open, offers will be made and accepted according to a version of the DA algorithm, but a human version where people make phone calls. Offers can be accepted early and programs often ask students to indicate in advance their willingness to accept an offer. (You’ll see why.) Roth and Xing (1994) describe a site visit in 1993.

Example: clinical psychology Program had 5 positions, 71 applicants, 29 interviews, Directors had ranked 20, and knew 6 would say yes if asked. Their strategy: “don’t tie up offers with people who will hold them”. Timeline on selection day At 9:00, calls placed to candidates 1,2,3,5,12 ---- 3,5,12 accept. Candidate 1 reached at 9.05, holds until 9.13, rejects. In the interim, candidate 8 calls, says she will accept. When 1 rejects, call placed to 8, who accepts. While call is in progress, 2 calls to reject. Call placed to 10 (who’d indicated acceptance), accepts at 9.21. By 9.35, remaining candidates informed of non-offer.

Optimal stable matchings A stable matching is man-optimal if every man prefers his partner to any partner he could possibly have in a stable matching. Theorem. The man-proposing DA algorithm results in a man-optimal stable matching. This matching is also woman-pessimal (each woman gets worst outcome in any stable matching). Note: the same result holds for woman-proposing DA with everything flipped.

Proof Say that w is possible for m if (m,w) in some stable matching. Show by induction that no man is ever rejected by a woman who is possible for him. Suppose this is the case through round n. Suppose at round n+1, woman w rejects m in favor of m’. Note: this means m’ made an offer to w in round n+1 and hence all the women m’ prefers to w (who he made prior offers to and who rejected him) must be impossible for him, by the inductive hypothesis. Claim: w must be impossible for m. Suppose we try to construct a stable matching that pairs (m,w). We need to put m’ with someone, but we can’t put him with a woman he prefers to w (they are impossible for him), and if we put him with someone less preferred, he and w will block. So in no round is a man rejected by a possible woman.

Stability vs. Pareto Efficiency The man-optimal stable match is best for men given stability, but may not be Pareto efficient for the men. Example: men m1, m2, m3; women w1, w2 m1: w1 > w2 w1: m2 > m3 > m1 m2: w2 > w1 w2: m1 > m3 > m2 m3: w1 > w2 Stable match is (m1, w2), (m2, w1). But men would be better off if m1, m2 swap wives! Why is this? … Stability respects women’s preferences as well as men’s. The stability vs Pareto efficiency tension will be important when we discuss school choice.

Rural Hospitals Theorem Theorem. The set of men and women who are unmatched is the same in all stable matchings. Why “rural hospitals”? DA is used to assign doctors to hospitals – some hospitals wondered if changing the algorithm would help them fill positions.

Proof of RH Theorem Let M,W be the sets of men and women matched in the man-optimal stable matching (which is also woman-pessimal). Let M’,W’ be the sets of men and women matched in some other stable matching. Any man in M’ must also be matched in the man-optimal stable matching, so M’ M … and also |M’| ≤ |M|. Any woman matched in the woman-pessimal stable matching must also be in W’, so W  W’ … and also |W| ≤ |W’|. In any stable matching, the number of matched men equals the number of matched women, so |M|=|W| and |M’|=|W’|. Therefore |M’| = |M| = |W| = |W’|. And so we must have M=M’ and W=W’.

Strategic Behavior The DA algorithm asks participants to report their preferences. Should they report truthfully or be strategic? Definitions: A matching mechanism is a mechanism that maps reported preferences into an assignment. A mechanism is strategy-proof if for each participant it is always optimal to be truthful.

DA is strategy-proof for men Theorem (Dubins and Freedman; Roth). The men proposing deferred acceptance algorithm is strategy-proof for the men. Proof. Fix the reports of all women and all but one man. Show that whatever report the man m considers making, there will be a chain of (weak) improvements leading to a truthful report.

Proof Suppose m is considering making a report that, fixing the reports of others, will lead to a match x where he gets w. The following changes improve his outcome Reporting that w is his only acceptable woman. DA will still result in him getting w – as if he “sat out” the rounds before he otherwise would have asked w. Reporting honestly, but truncating at w. Can’t hurt to ask women he likes better – he might get one and if not, he can still get w even asking at the end. Reporting honestly with no truncation. This won’t affect DA relative to above strategy.

DA not strategy-proof for women Example (two men, two women) m prefers w to w’ m’ prefers w’ to w w prefers m’ to m w’ prefers m to m’ Under man-proposing DA algorithm If everyone reports truthfullly: (m,w),(m’,w’) If w reports that m is unacceptable, the outcome is instead (m,w’),(m’,w) --- better for w!

Strategic behavior The example on the previous slide can be used to establish the following result. Theorem. There is no matching mechanism that is strategy-proof and always generates stable outcomes given reported preferences. Both versions of DA lead to stable matches, so neither version is strategy-proof for all participants!

How many stable matchings? Evidently, the incentives and scope for manipulation depend on whether preferences are such that there are many stable matchings. If there is a unique stable match given true preferences, there is no incentive to manipulate if others are reporting truthfully. When might we have a unique stable match? Ex: if all women rank men the same, or vice-versa. In “large” markets? We’ll come back to this later.

Summary Marriage model captures generic situation in which Participants on two sides must be matched one-to-one. Participants care about who they get matched with. Stability is a desirable outcome in this problem. Deferred acceptance algorithm finds a stable match Man-proposing version also finds stable match that is optimal for the men, and induces men to be truthful. Women may have some incentive to manipulate the algorithm by truncation, if they can identify an opportunity. Next time we will start to look at applications.