Determination of Binding Affinities and Molecular Mechanisms Petr Kuzmič BioKin, Ltd. Part 1: Theory Training Day May 2, 2014 (London)

Slides:



Advertisements
Similar presentations
Enzyme kinetics -- Michaelis Menten kinetics
Advertisements

Enzyme Kinetics C483 Spring 2013.
The Kinetic Theory of Gases
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics.
François Fages MPRI Bio-info 2006 Formal Biology of the Cell Modeling, Computing and Reasoning with Constraints François Fages, Constraint Programming.
Binding and Kinetics for Experimental Biologists Lecture 3 Equilibrium binding: Theory Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A.
Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A. Binding and Kinetics for Experimental Biologists Lecture 8 Optimal design of experiments.
Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A. Binding and Kinetics for Experimental Biologists Lecture 1 Numerical Models for Biomolecular.
Enzyme Kinetics, Inhibition, and Control
Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A. Binding and Kinetics for Experimental Biologists Lecture 7 Dealing with uncertainty: Confidence.
WATERTOWN, MASSACHUSETTS, U.S.A.
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
Binding and Kinetics for Experimental Biologists Lecture 4 Equilibrium Binding: Case Study Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A.
Steady-State Enzyme Kinetics1 A New 'Microscopic' Look at Steady-state Enzyme Kinetics Petr Kuzmič BioKin Ltd. SEMINAR: University.
Covalent Inhibition Kinetics Application to EGFR Kinase
Computational Biology, Part 17 Biochemical Kinetics I Robert F. Murphy Copyright  1996, All rights reserved.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 15 Probability Rules!
This continues our discussion of kinetics (Chapter 13) from the previous lecture. We will also start Chapter 14 in this lecture.
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Numerical Enzymology Generalized Treatment of Kinetics & Equilibria Petr Kuzmič, Ph.D. BioKin, Ltd. DYNAFIT SOFTWARE PACKAGE.
Chapter 12 Enzyme Kinetics, Inhibition, and Control Chapter 12 Enzyme Kinetics, Inhibition, and Control Revised 4/08/2014 Biochemistry I Dr. Loren Williams.
Chapter 8 Applications In physics In biology In chemistry In engineering In political sciences In social sciences In business.
Linear Momentum and Collisions
Chapter 15 Oscillatory Motion.
Binding and Kinetics for Experimental Biologists Lecture 2 Evolutionary Computing : Initial Estimate Problem Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN,
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
Binding Equilibria (11.6) Binding of ligands to proteins is prevalent in biochemistry – Catalytic behavior of proteins can be described through binding.
Biochemical / Biophysical Kinetics “Made Easy” Software DYNAFIT in drug discovery research Petr Kuzmič, Ph.D. BioKin, Ltd. 1.Theory: differential equation.
WATERTOWN, MASSACHUSETTS, U.S.A.
Numerical Enzymology Generalized Treatment of Kinetics & Equilibria Petr Kuzmič, Ph.D. BioKin, Ltd. 1.Overview of recent applications 2.Selected examples.
Rate of Reaction and Chemical Equilibrium. 2 Collision Theory Molecules must collide to react Effective collisions lead to products being formed Ineffective.
Biochemical Kinetics Made Easier Petr Kuzmič, Ph.D. BioKin, Ltd. 1.Theory: differential equations - DYNAFIT software 2.Example I: Initial rate experiment.
Engineering Statistics ENGR 592 Prepared by: Mariam El-Maghraby Date: 26/05/04 Design of Experiments Plackett-Burman Box-Behnken.
Computational Biology, Part 15 Biochemical Kinetics I Robert F. Murphy Copyright  1996, 1999, 2000, All rights reserved.
Enzyme kinetics Why study the rate of enzyme catalyzed reactions? Study of reaction rates is an important tool to investigate the chemical mechanism of.
CH13. Enzymes cXXkcZ2jWM&feature=related.
Rates of Reactions Why study rates?
Rules for deriving rate laws for simple systems 1.Write reactions involved in forming P from S 2. Write the conservation equation expressing the distribution.
Chapter 14 Chemical Kinetics (part 2). The Collision Model Goal: develop a model that explains why rates of reactions increase as concentration and temperature.
Irreversible Inhibition Kinetics1 Automation and Simulation Petr Kuzmič, Ph.D. BioKin, Ltd. 1.Automate the determination of biochemical parameters 2.PK/PD.
 We just discussed statistical mechanical principles which allow us to calculate the properties of a complex macroscopic system from its microscopic characteristics.
Biol 304 Week 3 Equilibrium Binding Multiple Multiple Binding Sites.
Introduction to Variables, Algebraic Expressions, and Equations You Need Your Comp Book.
Bio/Chemical Kinetics Made Easy A Numerical Approach Petr Kuzmič, Ph.D. BioKin, Ltd. 1. Case study: Inhibition of LF protease from B. anthracis 2. Method:
Chapter: Chemical Reactions Table of Contents Section 1: Chemical Formulas and Equations What you will learn and why is it important: page 492.
Lecture – 3 The Kinetics Of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam
Ludwid Boltzmann 1844 – 1906 Contributions to Kinetic theory of gases Electromagnetism Thermodynamics Work in kinetic theory led to the branch of.
Lecture 9: Theory of Non-Covalent Binding Equilibria Dr. Ronald M. Levy Statistical Thermodynamics.
1 Chapter 15 Probability Rules. 2 Recall That… For any random phenomenon, each trial generates an outcome. An event is any set or collection of outcomes.
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
Recombinase Mechanisms. Recombinase enzymes catalyze DNA insertion at specific attachment sites OBB’O O AttB : Bacterial attachment sites OPP’ AttP :
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 9.
AME 513 Principles of Combustion Lecture 5 Chemical kinetics II – Multistep mechanisms.
Enzymes Fall 2007 Lecture 2 Downloaded from
Enzyme Kinetics Sadia Sayed. What is Enzyme Kinetics?  Kinetics is the study of the rates at which chemical reactions occur  Then what is Enzyme Kinetics?
Chapter 11 Solving Equilibrium Problems for Complex Systems.
CHEE 323J.S. Parent1 Reaction Kinetics and Thermodynamics We define a catalyst as a substance that increases the rate of approach to equilibrium of a reaction.
2nd Nine Weeks Vocabulary Review Coach Whitlock
Bioreactors Engineering
Don’t be in a such a hurry to condemn a person because he doesn’t do what you do, or think as you think. There was a time when you didn’t know what you.
Enzymes II Dr. Kevin Ahern.
Chapter 6 CHM 341 Fall 2016 Suroviec.
13 part 2 Enzyme kinetics 酵素動力學 溫鳳君0993b303 姜喆云0993b039.
Lehninger Principles of Biochemistry
Kinetics Chapter 14.
Lecture 8 Enzyme Kinetics
Ingunn W. Jolma, Xiao Yu Ni, Ludger Rensing, Peter Ruoff 
Chapter 3 Modeling in the Time Domain
Volume 81, Issue 4, Pages (October 2001)
Presentation transcript:

Determination of Binding Affinities and Molecular Mechanisms Petr Kuzmič BioKin, Ltd. Part 1: Theory Training Day May 2, 2014 (London)

Binding Constants & Mechanisms pt.12 The study of biomolecular binding equilibria choose experimental method choose concentrations collect data data analysis preliminary vs. refinement experiments publish report binding constants molecular mechanism THE FOCUS OF THIS TRAINING DAY IS DATA ANALYSIS

Binding Constants & Mechanisms pt.13 Numerical vs. algebraic fitting models Algebraic fitting models Numerical fitting models single algebraic equationssystems of simultaneous equations may not exist for some mechanismsalways exist for any mechanism must be derived by handderived automatically by the computer special experimental conditionsapplicable to any set of conditions many software packageshighly specialized software SigmaPlot, GraphPad, Origin,... DynaFit, BioEQS ADVANTAGES OF THE GENERAL NUMERICAL APPROACH

Binding Constants & Mechanisms pt.14 The DynaFit software package ONLY A QUICK GLANCE DURING THIS IS A TRAINING DAY, NOT A THEORY CLASS REFERENCES 1.Kuzmic, P. (1996) Anal. Biochem. 237, Kuzmic, P. (2009) Meth. Enzymol. 467, CITATION ANALYSIS Cited in approximately 850 journal articles since 1998 Journals most frequently citing DynaFit: Biochemistry, J. Biol. Chem. WHAT CAN DYNAFIT DO FOR YOU Derive mathematical models for data fitting, fully automatically.

Binding Constants & Mechanisms pt.15 Example 1: Competitive ligand displacement assay THIS PROBLEM CAN BE HANDLED ALGEBRAICALLY, ALTHOUGH IT IS A STRETCH... Algebraic data-fitting model:

Binding Constants & Mechanisms pt.16 Competitive ligand displacement in DynaFit THIS PROBLEM CAN BE HANDLED ALGEBRAICALLY, ALTHOUGH IT IS A STRETCH... DynaFit data-fitting model: [mechanism] P + A PA : Ka dissociation P + B PB : Kb dissociation where the requisite mathematics is “somehow” handled by the computer

Binding Constants & Mechanisms pt.17 Example 2: A “complex” binding mechanism THIS PROBLEM CANNOT BE HANDLED ALGEBRAICALLY, EVEN IN PRINCIPLE! glycosylase (two sites) competitor (two sites) There can be no algebraic fitting model for this experiment!

Binding Constants & Mechanisms pt.18 A “complex” binding mechanism in DynaFit THIS PROBLEM CANNOT BE HANDLED ALGEBRAICALLY, EVEN IN PRINCIPLE! DynaFit data-fitting model: [mechanism] DNA + Gly DNA.Gly : Kd1 dissoc DNA.Gly + Gly Gly.DNA.Gly : Kd2 dissoc DNA + Comp DNA.Comp : Kd1* dissoc DNA.Comp + Comp Comp.DNA.Comp : Kd2* dissoc Glycosylase Competitor DNA

Binding Constants & Mechanisms pt.19 Theoretical considerations MINIMUM AMOUNT OF THEORY NEEDED FOR CONSTRUCTING MECHANISMS IN DYNAFIT Statistical factors Thermodynamic box Intensive physical quantities Rapid equilibrium enzyme kinetics 

Binding Constants & Mechanisms pt.110 Single-site and multi-site binding “P” = PROTEIN, “L” = LIGAND. OTHER SYMBOLS WOULD WORK EQUALLY WELL [mechanism] P + L P.L : Kd dissoc [mechanism] P + L P.L : Kd1 dissoc P.L + L P.L2 : Kd2 dissoc Single-site binding: one complex formed Two-site binding: two complexes formed

Binding Constants & Mechanisms pt.111 Cooperativity in multi-site binding [mechanism] P + L P.L : Kd1 dissoc P.L + L P.L2 : Kd2 dissoc [constants] Kd1 = ? ; optimized parameter Kd2 = 4 * Kd1 ; statistical factor Two non-interacting sites: one adjustable K d value [mechanism] P + L P.L : Kd1 dissoc P.L + L P.L2 : Kd2 dissoc [constants] Kd1 = ? ; optimized parameter Kd2 = ? ; optimized parameter Two cooperative sites: two adjustable K d values VALUES “12.34” AND “56.78” STAND FOR ANY SUITABLY CHOSEN NUMERICAL VALUE

Binding Constants & Mechanisms pt.112 Association step: Statistical factors FOR IDENTICAL NON-INTERACTING SITES, P  P.L IS TWICE AS LIKELY TO OCCUR AS P.L  L.P.L Rate constants: two possibilities for the first “marble” to fall in one possibility for the second “marble” to fall in

Binding Constants & Mechanisms pt.113 Dissociation step: Statistical factors FOR IDENTICAL NON-INTERACTING SITES, L.P.L  P.L IS TWICE AS LIKELY TO OCCUR AS P.L  P one possibility for the remaining “marble” to fall out two possibilities for a “marble” to fall out Rate constants:

Binding Constants & Mechanisms pt.114 Equilibrium: Statistical factors FOR TWO IDENTICAL NON-INTERACTING SITES, K d (2) IS FOUR TIMES LARGER THAN K d (1) recall:

Binding Constants & Mechanisms pt.115 Statistical factors for two binding sites - Summary For two identical, non-interacting sites, K d (2) is always four times larger than K d (1). For two cooperative sites, both K d (2) and K d (1) can attain any arbitrary values. DYNAFIT NOTATION FOR NON-INTERACTING SITES [mechanism] P + L P.L : Kd1 dissoc P.L + L P.L2 : Kd2 dissoc [constants] Kd1 =... ? ; any appropriate value Kd2 = 4 * Kd1 ; statistical factor HOW TO REPRESENT (LACK OF) COOPERATIVITY IN DYNAFIT

Binding Constants & Mechanisms pt.116 Statistical factors for multiple identical binding sites Bisswanger, H. (2008) Enzyme Kinetics, 2 nd Ed., Wiley-VCH, Tuebingen, p. 14, Eq. (2) NON-INTERACTING, IDENTICAL BINDING SITES n = number of binding sites i = ith binding step K d = microscopic dissociation constant K d (i) = macroscopic K d in ith binding step EXAMPLE: n = 4 1: : 6: 16

Binding Constants & Mechanisms pt.117 Statistical factors in DynaFit distributed example file:./courses/BSTD-2014/ThT_22AG/noninteracting.txt Gabelica et al. (2013) Biochemistry 2013, 52, , Figure 3D [mechanism] DNA + Lig DNA.Lig : Kd1 dissoc DNA.Lig + Lig DNA.Lig.2 : Kd2 dissoc DNA.Lig.2 + Lig DNA.Lig.3 : Kd3 dissoc DNA.Lig.3 + Lig DNA.Lig.4 : Kd4 dissoc [constants] Kd1 = 40 ? ; = 1/4 Kd, Kd... microscopic Kd2 = * Kd1 ; = 2/3 Kd Kd3 = 6 * Kd1 ; = 3/2 Kd Kd4 = 16 * Kd1 ; = 4 Kd ASSUME FOUR IDENTICAL, NON-INTERACTING DNA/Ligand SITES

Binding Constants & Mechanisms pt.118 Theoretical considerations MINIMUM AMOUNT OF THEORY NEEDED FOR CONSTRUCTING MECHANISMS IN DYNAFIT Statistical factors Thermodynamic box Intensive physical quantities Rapid equilibrium enzyme kinetics 

Binding Constants & Mechanisms pt.119 Cycles in binding mechanisms: Thermodynamic box Example: enzyme “E” simultaneously binding two co-substrates “A” and “B” E E·A E·B E·A·B products thermodynamic box

Binding Constants & Mechanisms pt.120 Conservation of energy: Overall K eq must be unity E E·A E·B E·A·B Kd(A)Kd(A) Kd(B)Kd(B) Kd(AB)Kd(AB) Kd(BA)Kd(BA) clockwise around the cycle: upper branch must meet lower branch:

Binding Constants & Mechanisms pt.121 The “leave one out” rule for thermodynamic boxes HOW TO REPRESENT CYCLIC BINDING MECHANISMS IN DYNAFIT E E·A E·B E·A·B Kd(A)Kd(A) Kd(B)Kd(B) Kd(AB)Kd(AB) Kd(BA)Kd(BA) There are four equivalent ways to represent this mechanism. [mechanism] E + A E.A : KdA dissoc E + B E.B : KdB dissoc E.A + B E.A.B : KdAB dissoc [mechanism] E + A E.A : KdA dissoc E + B E.B : KdB dissoc E.B + A E.A.B : KdBA dissoc [mechanism] E + A E.A : KdA dissoc E.A + B E.A.B : KdAB dissoc E.A.B E.B + A : KdBA dissoc [mechanism] E + B E.B : KdB dissoc E.B + A E.A.B : KdBA dissoc E.A.B E.A + B : KdAB dissoc Number of binding steps must match the number of unique complexes.

Binding Constants & Mechanisms pt.122 Always check published literature results left branch must meet right branch: PLoS Pathog 10(2): e (2014) 2.56  1.55 =  0.52 = 3.93

Binding Constants & Mechanisms pt.123 Theoretical considerations MINIMUM AMOUNT OF THEORY NEEDED FOR CONSTRUCTING MECHANISMS IN DYNAFIT Statistical factors Thermodynamic box Intensive physical quantities Rapid equilibrium enzyme kinetics 

Binding Constants & Mechanisms pt.124 Two types of observable physical quantities ExtensiveIntensive Signal is proportional to concentrations Signal is proportional to mole fractions fluorescence intensity NMR peak area UV/Vis absorbance HPLC peak area radioactive counts optical rotation... fluorescence polarization (anisotropy) NMR chemical shift...

Binding Constants & Mechanisms pt.125 Intensive physical variables in DynaFit HOW TO REPRESENT INTENSIVE VARIABLES IN DYNAFIT [responses] intensive... Use the DynaFit keyword “intensive” in the [responses] section of the input script: Example: Protein-protein binding constants determined by NMR Kuzmic, P. (2009) Meth. Enzymol. 467,

Binding Constants & Mechanisms pt.126 Theoretical considerations MINIMUM AMOUNT OF THEORY NEEDED FOR CONSTRUCTING MECHANISMS IN DYNAFIT Statistical factors Thermodynamic box Intensive physical quantities Rapid equilibrium enzyme kinetics 

Binding Constants & Mechanisms pt.127 Rapid-equilibrium approximation in enzyme kinetics I. Segel (1975) “Enzyme Kinetics”, J. Wiley, New York, pp How is this derived? The Michaelis-Menten mechanism and rate equation: Rate is proportional to the equilibrium concentrations of reactive complexes!

Binding Constants & Mechanisms pt.128 Enzyme kinetics treated as simple “binding equilibria” 1.Compute the composition at equilibrium. 2.Look up all enzyme-substrate complexes that do form products. 3.Multiply their concentrations by an appropriate proportionality constant: constant = molar instrumental response of the product  relevant k cat 4.Compute the sum total of all such terms. The result is the initial rate under the rapid equilibrium approximation.

Binding Constants & Mechanisms pt.129 Rapid-equilibrium enzyme kinetics in DynaFit TWO EQUIVALENT WAYS TO REPRESENT RAPID-EQUILIBRIUM ENZYME KINETICS DYNAFIT See “DynaFit Scripting Manual” on METHOD 1: initial rate formalism [task] data = rates approximation = rapid-equilibrium [mechanism] E + S E.S : Ks dissoc E.S ---> E + P : kcat [constants] Ks =... kcat = 3 [responses] P = 4... [task] data = equilibria [mechanism] E + S E.S : Ks dissoc [constants] Ks =... [responses] E.S = 12 ; = 3  4... METHOD 2: equilibrium formalism

Binding Constants & Mechanisms pt.130 Summary Statistical factors Independent binding sites: K d s are linked via statistical factors. Cooperative binding sites: K d s can attain arbitrary values. Thermodynamic boxes The “leave one out” rule: thermodynamic cycles must remain open. It does not matter which edge of the box is left out. Intensive physical quantities Use intensive keyword for NMR chemical shift or fluorescence polarization. Omit this keyword for fluorescence intensity, UV/Vis absorbance, etc. Rapid equilibrium enzyme kinetics All rapid equilibrium enzyme kinetics can be expressed as “binding equilibria ”. Turnover numbers (“k cat ” values) become “responses” in the binding model.