Coronal Magnetograph for Space and Ground-based Solar Observatories Silvano Fineschi Alessandro Bemporad, Gerardo Capobianco, Jessica Girella INAF –Astrophysical.

Slides:



Advertisements
Similar presentations
Electro-optical Spectro-polarimeter for Ground- and Space-based
Advertisements

The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
ASPIICS on PROBA-3 Association de Satellites Pour l’Imagerie et l’Interférométrie de la Couronne Solaire San Diego, SPIE August, 26 th 2007 Sébastien Vives,
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Inner Source Diffuse Helium Observations Elena Moise 1, Jeff Kuhn 1, and John Raymond 2 1 Institute for Astronomy, University of Hawai’i 2 Harvard-Smithsonian.
ILWS 12 June 2007 ASI Program Ester Antonucci. Participation In Flight Missions SOHO (UVCS)SOHO (UVCS) UlyssesUlysses CLUSTERCLUSTER DOUBLE STARDOUBLE.
Andreas Lagg, Achim Gandorfer, Davina Innes MPI for Solar System Research Katlenburg-Lindau, Germany
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Calibration-Diagnostics Spectral Photometric/Gain Polarimetric Empirical or hardware calibrators NIRSPC or G Disk or Corona.
Plasmas in Space: From the Surface of the Sun to the Orbit of the Earth Steven R. Spangler, University of Iowa Division of Plasma Physics, American Physical.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
3D Inversion of the Magnetic Field from Polarimetry Data of Magnetically Sensitive Coronal Ions M. Kramar, B. Inhester Max-Planck Institute for Solar System.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Alfvén Waves in the Solar Corona S. Tomczyk, S. Mclntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson Science, Vol. 317, Sep., 2007.
Coronal magnetic field observations Useful coronal field model constraints can be obtained from IR observations This is a vigorous activity, with three.
SDO Project Science Team 1 The Science of SDO. SDO Project Science Team 2 Sensing the Sun from Space  High-resolution Spectroscopy for Helioseismology.
Magnetic Field Measurements from Solar-B Information shown here is from Solar-B team (including Drs Ichimoto, Kosugi, Shibata, Tarbell, and Tsuneta)
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
Connecting coronal structure to photospheric origins Active region (sunspot) evolution and solar rotation well define long term, persistent, coronal streamers.
CStCyr—SECCHI Paris-Mar #1 STEREO SECCHI COR1 Science O. C. St. Cyr Heliophysics Science Division – Code 670 NASA-Goddard Space Flight Center
HMI Optics Package HMI Electronics Box The Solar Dynamics Observatory will be placed into an inclined geosynchronous orbit to maximize sunlit hours while.
Near Infrared Tunable Filter System for ATST Big Bear Solar Observatory & Solar Research Center, NJIT Aug. 25, 2003.
ChroMag 1 Chromospheric Science and ChroMag Alfred de Wijn, Scott McIntosh, Michael Thompson High Altitude Observatory NCAR.
The COronal Solar Magnetism Observatory (COSMO) is a proposed facility dedicated to studying coronal and chromospheric magnetic fields and their role in.
An Introduction to Space Weather J. Burkepile High Altitude Observatory / NCAR COSMO K-Coronagraph Science Requirements Joan Burkepile
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Instrumental & Technical Requirements. Science objectives for helioseismology Understanding the interaction of the p-mode oscillations and the solar magnetic.
HELAS, Nice 27 September 2006 Visible light Imager and Magnetograph T.Appourchaux on behalf of the VIM team IAS.
IR Coronal Tools: Jeff Kuhn Institute for Astronomy, University of Hawaii Current progress and harmonic convergences IR is good Stokes V is better What’s.
ATST Science Requirements ScienceTeam. Outline/Scope State Requirements – focus on top level No attempt to give detailed explanation or justification.
Observing the Sun. Corona: EUV; X-rays Chromosphere: H , UV, EUV Photosphere: near UV, Visible light, infra-red.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
P. Gömöry, J. Ambróz, J. Koza, M. Kozák, A. Kučera, J. Rybák, P. Schwartz S. Tomczyk, S. Sewell, P. Aumiller, R. Summers, L. Sutherland, A. Watt Astronomical.
Spectropolarimetry with the green line: Observations and Simulations
Polarized V-band Stars for In-flight Calibration of Space-borne Solar Coronagraphs Capobianco, Gerardo; Fineschi, Silvano INAF- Osservatorio Astrofisico.
Collaboration of BBSO/NST and SOT Haimin Wang Big Bear Solar Observatory 1. Six-station Global Full Disk Halpha Network –Large scale structure of flares.
September 14, Monday 4. Tools for Solar Observations-II Spectrographs. Measurements of the line shift.
Jean Arnaud, Marianne Faurobert, Gérad Grec et Jean-Claude Vial Jean Arnaud Marianne Faurobert Gérard Grec et Jean-Claude Vial Coronal Magnetometry.
YunNan One Meter Infrared Solar Tower Jun Lin. Why is YNST? After Solar-B launch, what can we do by using of ground-based telescope ? Detailed chromosphere.
SHINE 2008, June 23-27, Utah Observational Test of Coronal Magnetic Field Models I. Comparison with Potential Field Model Hao-Sheng Lin & Yu Liu Institute.
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
Probing Coronal Magnetism with Multi-wavelength Polarimetry Silvano Fineschi INAF-Torino Astrophysical Observatory, Italy 25 May, 2013, Bern (CH)
HIGH ALTITUDE OBSERVATORY NCAR – Boulder, CO Boulder Solar Days – Friday, March 20th, 2009 The Visible Spectro-Polarimeter (ViSP) A First-Light Instrument.
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
Coronal Spectro- polarimetry with the Turin Lyot-Filter Silvano Fineschi INAF – Astrophysical Observatory of Torino, Italy Future of Polarimetry - Brussels.
A.Kučera 1, S. Tomczyk 2, J. Ambróz 1, S. Sewell 2, J. Rybák 1, P. Aumiller 2, P. Gömöry 1, R. Summers 2, P. Habaj 1, L. Sutherland 2, J. Kavka 1, A. Watt.
The Sun Understanding our Star with Polarimetry Silvano Fineschi INAF – Astrophysical Observatory of Torino - Italy Internatonal School of Astropolarimetry.
Simultaneous VLA and UVCS/SOHO Observations of the Solar Corona Steven R. Spangler (University of Iowa), Mari Paz Miralles, Steven R. Cranmer, and John.
The new CLIMSO* instrumentof Pic du Midi Observatory The new CLIMSO* instrument of Pic du Midi Observatory for studying the disk and the inner corona activity.
COSMO Large Coronagraph Preliminary Design Review
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
What can we learn about coronal mass ejections through spectroscopic observations Hui Tian High Altitude Observatory, National Center for Atmospheric Research.
Analysis of 3 and 8 April 2010 Coronal Mass Ejections and their Influence on the Earth Magnetic Field Marilena Mierla and SECCHI teams at ROB, USO and.
MASC: Magnetic Activity of the Solar Corona Frédéric Auchère, Jean-Claude Vial Institut d’Astrophysique Spatiale, France Weiqun Gan, Hui Li Purple Mountain.
The Helium Corona Observed by the Helium Resonance Scattering in the Corona and Heliosphere (HERSCHEL) Sounding Rocket J.D. Moses, NRL E. Antonucci, OATo/INAF.
Focal Plane Instrumentation at Big Bear Solar Observatory
Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization Wenxian Li, Roberto Casini, T. del Pino Alemán.
Curtis Walker – UCAR/SUNY Oneonta Scott Sewell – NCAR/HAO
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Upcoming Facilities of IIA
Science with NCAR’s G V aircraft during the 21 Aug 2017 total solar eclipse Greatest eclipse 18:25:28 UT.
XRT Particle Acceleration at Magnetic Reconnection Sites
Scattering and Polarization
Curtis Walker – UCAR/SUNY Oneonta Scott Sewell – NCAR/HAO
Curtis Walker – UCAR/SUNY Oneonta Scott Sewell – NCAR/HAO
Curtis Walker – UCAR/SUNY Oneonta Scott Sewell – NCAR/HAO
Curtis Walker – UCAR/SUNY Oneonta Scott Sewell – NCAR/HAO
Proba-3 is ESA’s – and the world’s – first precision formation flying mission.
Filament/Prominence Eruption Corona Mass Ejection (CME)
Presentation transcript:

Coronal Magnetograph for Space and Ground-based Solar Observatories Silvano Fineschi Alessandro Bemporad, Gerardo Capobianco, Jessica Girella INAF –Astrophysical Observatory of Torino, Italy Jan Rybak AISAS-Lomnicky Observatory, Slovakia Sarah Gibson NCAR-High Altitude Observatory Punta Leona (Costa Rica)– 2 December 2014 Polarimetry: From the Sun to Stars and Stellar Environments

Summary Spectro-polarimetry of coronal line-emission in the IR & visible-light wavelength spectrum («forbidden lines», e.g., FeXIV) have demonstrated to be a promising, valuable diagnostics tool of the coronal magnetic field. New space optics for solar physics (e.g., LC-based spectropolarimetry optics) New modeling &computing capabilities (e.g., FORWARD numerical code) New ground- and space-based observatories with spectro-polarimeters (e.g., COSMO, Lomnicky-stit, Baloon-borne WAMIS, ASPIICS/Proba-3)

Hanle Effect (tutorial)  Larmour  A

Hanle Effect (tutorial)  Larmour  A If  Larmour >> A (VIR forbidden lines)  P is // or  B

Polarization vector Van Vleck angle 5  >  v  <  v Line Polarization Vector “Saturated” Hanle effect  Larmour >> A

Green Line Selection for Coronal B Diagnostics Judge, 1998 J’=1  J=0, Atomic alignment W 2 (1, 0) = 1 J’=3/2  J=1/2, Atomic alignment W 2 (3/2, 1/2) = 0.5 Coronal Green line polarimetry Theory: well undersood (Charvin, House, Sahal-Brechot, Casini) Observations: Edlen, Querfeld & Smartt, Arnaud & Newkirk, Mierla, …) FeXIV polarimetry for a coronal B diagnostics?! Past limitations in Instrumentation  simultaneous narrow bandpass imaging & polarimetry coronal atmosphere modeling  computationally demanding numerical codes Location, location, location!  ground coronagraphic sites, space

7 FeXIV line nm (configuration 3s 2 3p) is a magnetic dipole transition: 2 P 3/2 → 2 P 1/2 Fe XIV nm (“Green Line”) Judge, 1998

8 Turin - Liquid-crystal Tunable Lyot Filter for Solar Coronagraphy

LC Tunable-filter & Polarimeter Procurement

Turin - Liquid-crystal Tunable Lyot Filter Perfomances 10

2010 Eclipse Results of CorMag

Coronal Temperature contour levels: Blue: 1.  10 6 K green: 1.5  10 6 K Red: 2.  10 6 K 12 CorMag Spectroscoy

Polarization vector’s angle in a Coronal Cavity 13 Left: M. Druckmuller imaging (spatial resolution 1’’). Right: CorMag polarization vector direction (res. 12.4’’). CorMag Polarimetry

«Saturated» Hanle effect in the Coronal FeXIV Line 14  >  v  <  v Girella, 2014)

15 Model of global solar magnetic field based on extrapolation from phototospheric magnetograms (averaged over a Carrington rotation do) not include transient structures Forward modeling vs CorMag observations I I I CorMag (res. 12.4’’) Druckmuller (res. 1”)

16 CorMAg K- pB PredSci K-pB Left: Predictive Scence B model extrapolation. Center: Synthetic pB emission from Predictive Science. Right: pB measured by CorMag. Forward Modeling vs CorMag observations

17 E-corona Polarization Degree (pB/B) pB FORWARD model pB

18 Measured Stokes Paramenters of FeXIV Line (Q/I) (FORWARD code S. Gibson, P. Judge, R. Casini) Q FORWARD Model Q

19 Measured Stokes Paramenters of FeXIV Line (U/I) (FORWARD code S. Gibson, P. Judge, R. Casini) U FORWARD Model U

20 CorMag at Lomnicky Stit Observatory (Slovakia)

WAMIS Baloon-borne Lyot Spectro-Polarimeter (FeXIII nm) US Naval Reserach Lab. – HAO - Italy – France proposal submitted to NASA (2014)

Proba-3 – ASPIICS Coronagraph

ESA PROBA-3 Formation-Flying Coronagraph A coronagraph with the external occulter on one spacecraft and the optical instrument on the other spacecraft at ~150 meters from the first one. ASPIICS: 2009 selection; 2010 Phase-A (Startiger); 2011 Phase-B, 2015 Phase C/D; Proba-3 – ESA: launch Habbal 2011

Proba-3 Coronagraph – ASPIICS Observables LASCO-C1

LCVR for Proba-3 Coronagraph - ASPIICS Polarimeter: Liquid Crystal Variable Retarder Quarter-wave retarder (fixed) nm interf. filter (FWHM=0.15 nm) Linear polarizer (analyzer)

Fineschi, 2013

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

Summary Spectro-polarimetry of coronal line-emission in the IR & visible-light wavelength spectrum («forbidden lines», e.g., FeXIV) have demonstrated to be a promising, valuable diagnostics tool of the coronal magnetic field. New space optics for solar physics (LC-based spectropolarimetry optics) New computing capabilities (FORWARD numerical code) New ground- and space-based observatories with spectro-polarimeters (Lomnicky-stit, Baloon-borne WAMIS, ASPIICS/Proba-3)

OUTLINE Hanle effect of line linear polarization by resonance scattering as diagnostics tool to probe the coronal magnetic fields 2010 Eclipse observations of the coronal FeXIV nm linear polarization. Hanle effect interpretation and comparision with forward modeling Future spectro-polarimeters for ground- and space-based coronal magnetographs (ASPIICS/Proba-3)