Processing of VLBI observation in St. Petersburg University Kudryashova Maria Astronomical Institute of Saint Petersburg University.

Slides:



Advertisements
Similar presentations
The 3D representation of the new transformation from the terrestrial to the celestial system. Véronique Dehant, Olivier de Viron Royal Observatory of Belgium.
Advertisements

Dennis D. McCarthy Elements of Prediction. Why are we here? IERS Working Group on Predictions IERS Working Group on Predictions Definitive user requirements.
A comparison of R1 and R4 IVS networks S.B. Lambert, Royal Observatory of Belgium, formerly at NVI, Inc./US Naval Observatory A.-M. Gontier, Paris Observatory.
VieVS User Workshop 7 – 9 September, 2010 Vienna Creating special files: Process lists, parameter files, TRF and EOP files Tobias Nilsson.
Principles of the Global Positioning System Lecture 19 Prof. Thomas Herring Room A;
VieVS User Workshop 7 – 9 September, 2010 Vienna Vie_LSM Kamil Teke and Johannes Böhm.
On the alternative approaches to ITRF formulation. A theoretical comparison. Department of Geodesy and Surveying Aristotle University of Thessaloniki Athanasios.
1 International Conference on RadioAstron Mission November 2003, Moscow ASTROMETRIC GOALS OF THE RADIOASTRON MISSION V.E.ZHAROV 1, A.E.RODIN 2, I.A.GERASIMOV.
VLBA Astrometry Workshop, Socorro, NM Global Astrometry with the VLBA Outline VLBI astrometry/geodesy overview Applications of global VLBI astrometry Contributions.
2-3 November 2009NASA Sea Level Workshop1 The Terrestrial Reference Frame and its Impact on Sea Level Change Studies GPS VLBI John Ries Center for Space.
Institut for Geodesy Research Unit Earth Rotation and Global Dynamic Processes Earth Orientation Parameters from Lunar Laser Ranging Liliane Biskupek Jürgen.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_MOD stations corrections Hana Spicakova.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_MOD Lucia Plank.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_GLOB Hana Spicakova.
Coordinate-systems and time. Seeber 2.1. NON INERTIAL SYSTEM CTS: Conventional Terrestrial System Mean-rotationaxis Greenwich X Y- Rotates.
VieVS User Workshop 7 – 9 September, 2010 Vienna VIE_INIT Tobias Nilsson.
VieVS User Workshop 7 – 9 September, 2010 Vienna High frequency EOP estimated from the CONT campaigns Tobias Nilsson.
VieVS User Workshop 7 – 9 September, 2010 Vienna VIE_GLOB Hana Spicakova.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_SCHED Jing SUN.
Laser Ranging Contributions to Earth Rotation Studies Richard S. Gross Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109–8099,
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_LSM Kamil Teke and Johannes Böhm.
GNSS Observations of Earth Orientation Jim Ray, NOAA/NGS 1. Polar motion observability using GNSS – concepts, complications, & error sources – subdaily.
Deflection of light induced by the Sun gravity field and measured with geodetic VLBI Oleg Titov (Geoscience Australia) Anastasiia Girdiuk (Institute of.
2012 DiFX user’s meeting, Sydney, Australia USNO Software Correlator: Status Report Outline USNO/WACO Background USNO Prototype Software Correlator (UPSC)
Coordinate systems on the Moon and the physical libration Natalia Petrova Kazan state university, Russia 20 September, 2007, Mitaka.
Future IGS & inter-technique SINEX combinations: Issues and challenges D. Lavallée (aka Peter Clarke), R. Ferland, D. Thaller, T. Herring, R. Biancale.
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
The Future of the VLBA Workshop, Charlottesville, VA Earth Orientation and GPS Outline Geodetic VLBI background Applications of Geodetic VLBI VLBI for.
IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
Athanasios Dermanis and Dimitrios Tsoulis Numerical evidence for the inconsistent separation of the ITRF-ICRF transformation into precession-nutation,
GGOS User Requirements and Functional Specifications Richard S. Gross Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA Global.
The ICRF, ITRF and VLBA Chopo Ma NASA’s Goddard Spaceflight Center.
35th COSPAR Scientific Assembly, Paris, July 18-25, IVS Products for Precise Global Reference Frames Wolfgang Schlüter Bundesamt für Kartographie.
Prospective Improvements of IVS Products and Evolvement of Observing Programs Harald Schuh WG2 Chair Vienna University of Technology
What is Astrometry? Definition: To study the universe through positions and motions of celestial objects Acronym: Fund./Classical/Positional Astr. Related.
State-of-the-art physical models for calculating atmospheric pressure loading effects 1 Geodätische Woche October, Köln, Germany Dudy D.
The current status of K5 eVLBI intensive session Takashima, Kazuhiro; Machida,Morito; Fujisaku, Junichi; Kokado, Kensuke; Shigematsu, Hiromi Geographical.
Franz Hofmann, Jürgen Müller, Institut für Erdmessung, Leibniz Universität Hannover Institut für Erdmessung Hannover LLR analysis software „LUNAR“
S/X receiver for Parkes geodetic VLBI program 29 October 2012 ATNF, Sydney 29 October 2012 Оleg Titov (Geoscience Australia)
3D representation of the Non-Rotating Origin Olivier de Viron and Veronique Dehant Royal Observatory of Belgium Scientific adviser: Nicole Capitaine.
Principles of the Global Positioning System Lecture 12 Prof. Thomas Herring Room ;
Evaluation of Global Ionosphere TEC by comparison with VLBI data Mamoru Sekido, Tetsuro Kondo Eiji Kawai, and Michito Imae.
Global VLBI Solution IGG05R01 1 Institute of Geodesy and Geophysics (IGG), Vienna, Austria 2 German Geodetic Research Institute (DGFI), Munich, Germany.
Coordinate Transformations TM, A. Tamburro Based on Slalib docs/sun67.htx/sun67.html Tested against MACRO algorithms and.
LLR Analysis – Relativistic Model and Tests of Gravitational Physics James G. Williams Dale H. Boggs Slava G. Turyshev Jet Propulsion Laboratory California.
Catherine LeCocq SLAC USPAS, Cornell University Large Scale Metrology of Accelerators June 27 - July 1, 2005 Coordinate Systems 1 Coordinate Systems Purpose:
20 th Meeting of the European VLBI Group for Geodesy and Astrometry (EVGA), Bonn, Germany Wednesday, 28 th March 2011 EVGA – Looking back at the early.
03/000 Effect of the reference radiosource instability on the TRF solution Australian Government Geoscience Australia 4 th General IVS Meeting, 9-13, January,
03/000 VLBI network design Australian Government Geoscience Australia NGRS Workshop, 1-2 February, Canberra.
Satellite geodesy (ge-2112) Introduction E. Schrama.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
03/000 Statistical properties of CRF solution from VLBI data analysis Oleg Titov Australian Government Geoscience Australia GAIA-2005, Dresden, 15-16,
IVS High Accuracy Products for the Maintenance of the Global Reference Frames as a Contribution to GGOS VLBI provides high accuracy and unique products.
Institute of Geodesy and Geophysics, Vienna University of Technology Vienna, February 2004 Harald Schuh Subgroup "Data Analysis" of Working Group 3 VLBI2010.
12.201/ Essentials of Geophysics Geodesy and Earth Rotation Prof. Thomas Herring
Importance of SLR in the Determination of the ITRF Zuheir Altamimi IGN, France Geoscience Australia, Canberra, August 29, 2005 SLR Strength: its contribution.
IERS Combination WG and CPP Meeting, April 27, 2005, TU of Vienna, Austria Status and Future of the IERS Combination Efforts Markus Rothacher GeoForschungsZentrum.
IERS Directing Board Meeting No.39, BIPM Paris, September 23, 2004 IERS2005: Plan “Integrated Earth orientation parameters, Radio sources, and Site coordinates.
Observations of ERS from ICRF2 list using ASV 60cm and Rozhen 2m telescopes I. S. Milić, G. Damljanović Astronomical Observatory, Belgrade,
Space Geodesy Branch Highlights, August 2002 CONT02 VLBI Campaign
IVS contribution to the ITRF2014
Kamil Teke and Johannes Böhm
Troposphere and Clock Parameterization During Continuous VLBI Campaigns Kamil Teke1, 2, Johannes Boehm1, Hana Spicakova1, Andrea Pany1, Harald Schuh1 1.
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
WHY DOES THE IGS CARE ABOUT EOPs?
VLBI Estimates of Vertical Crustal Motion in Europe
VIE_INIT_V30 Daniel Landskron.
Correlation coefficients
Numerical evidence for the inconsistent separation
Presentation transcript:

Processing of VLBI observation in St. Petersburg University Kudryashova Maria Astronomical Institute of Saint Petersburg University

Overvew Astronomical Institute structure Laboratory of Astrometry Basic principals of VLBI Analysis of VLBI observations in AI SPb

Astronomical Institute structure Laboratories: Active Galaxy Nuclei Observational astrophysics Theoretical astrophysics Solar physics and radioastronomy Stellar dynamics and celestial mechanics Astrometry

Laboratory of Astrometry -areas of investigation - Analysis of stars catalogues Study of Earth rotation GPS observations (2003, S.D. Petrov) Analysis of VLBI observation (1998, O.A. Titov)

Laboratory of Astrometry -rooms-

Laboratory of Astrometry -staff -

Laboratory of Astrometry -new telescope- Clear aperture …305 mm (12") Focal length …3048 mm Optical design Schmidt-Cassegrain

Basic principles of VLBI -Observables- Observational values:  o - time delay [ns]  /  t - delay rate [ps/s]

Basic principles of VLBI -File of observations- DATA IN NGS FORMAT FROM DATA BASE 05OCT06XE_V004 Observed delays and rates into card #2 FORTLEZA AZEL HARTRAO EQUA NYALES AZEL TIGOCONC AZEL KOKEE AZEL WETTZELL AZEL C FORTLEZA HARTRAO I I 109

Basic principles of VLBI -fundamental role- CRF Sources positions (!) TRF Station positions velocities EOP Polar Motion (x,y) UT1-UTC (!) Nutation angles (d , d  ) (!)

Basic principles of VLBI -observational programs- Earth Orientation Parameters (EOP): Terrestrial Reference Frame (TRF): Celestial Reference Frame (CRF): Monthly sessions to investigate instrumental effects : IVS-R1, IVS-R4 IVS-INT1, IVS-INT2 IVS-E3 IVS-T2 (RDV) IVS-CRF (RDV) IVS-R&D

Observational programs - R1, R4, Int1, Int2-

Basic principles of VLBI -processing of VLBI- Calculation of the model of VLBI observable (description of procedures could be found in IERS Conventions) -  c Estimation of parameters (LS method, least- square collocation method LSCM, Kalman filter, etc.)  =  o -  c =  c /  p i  p i + w, p i – parameters under estimations (EOP, stations and radiosources coordinates, etc. )

Basic principles of VLBI -modeling of observable- x i,y i,z i, i=1,.., N - stations coordinates in TRF (N=2-10) should be modified for Earth-fixed effects (tides, loading, tectonic motion, etc.)  j  j, j=1,.., M – radiosources coordinates in CRF (M~60) EOP – a priory values of x,y, UT1-UTC, d ,d  from IERS C04 c  c = - k Q (r 2 - r 1 ) + …. k – unit vector from the barycenter to the radiosource; r i – position of station “ i “ in TRF; Q – transformation matrix from Terrestrial to Celestial Reference Frame

Analysis of VLBI observations in AI SPb -Methods of parameters estimation- Least square method Kalman Filter Least square collocation method

Analysis of VLBI observations in AISPb - Description of solutions for IVS/IERS- Spu00002.eopiSpu0003i.eops Observational programs – NEOS-Intensive … Int1, Int – NEOS-A … R1,R4 Number of session (days between sess.) 6-7 sess. per week (1-2 day) 2 sess. per week (2-3 day) Duration of session1 hour24-hours Parameters under estimation UT1-UTC x, y, UT1-UTC, d , d 

Analysis of VLBI observations in AISPb -S olution for CRF, TRF, sub-daily EOP- Observational programs (1989-now): NEOS-A, CORE-A, Cont94, Cont96, Cont02, R1,R4 … Time lag between the sessions: 7-1 day Duration of session: 24 hours Parameters under estimation: daily parameters - TRF, d , d  ; sub-daily parameters - x, y, UT1-UTC Number of estimation: 1 per 2-5 min

Analysis of VLBI observations in AI SPb - sub-daily EOP-