ΔG/G Extraction From High- P t Hadron Pairs at COMPASS Ahmed El Alaoui Nuclear Physics School, Erice, 16-24 September 2007 On Behalf Of COMPASS Collaboration.

Slides:



Advertisements
Similar presentations
The COMPASS spin physics program Rencontres de Moriond S. Panebianco The COMPASS spin physics program Stefano Panebianco (CEA/Saclay) on behalf of the.
Advertisements

Determination of the gluon polarisation at HERMES N. Bianchi on behalf of: The HERMES Collaboration & The main analyzers (P.Liebing, E.Aschenauer, R.Fabbri,
Recent measurement of ΔG/G at COMPASS Sébastien Procureur – CEA Saclay on behalf of the COMPASS collaboration EPS200523/07/2005.
Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
QCD N06 - Monte Porzio Catone - 15/06/ SIDIS Cross Sections and Spin Asymmetries Predictions for Ongoing and Future Experiments M.Elena Boglione.
Determination of the gluon polarisation at COMPASS & RHIC Sébastien Procureur (CEA - Saclay) Determination of  G at COMPASS & RHICPAVI06, Milos S.Procureur.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
10/03/'06 SPIN2006, T. Horaguchi 1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
Qiang Zhao Institute of High Energy Physics, CAS, P.R. China Department of Physics, University of Surrey, U.K. Baryons in a potential quark model Selection.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Stony Brook, Dec Physics Topics Working.
1 Flavor Symmetry of Parton Distributions and Fragmentation Functions Jen-Chieh Peng Workshop on “Future Prospects in QCD at High Energy” BNL, July 17-22,
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
1 Recent results on Polarized Quark and Gluon Distributions at COMPASS I.Savin, JINR, Dubna on behalf of the COMPASS Collaboration Outline 1. Introduction.
Study of Higgs boson production in bosonic decay channels at the LHC (including off-shell production) Susumu Oda Kyushu University On behalf of the ATLAS.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
QCD analysis of the nucleon spin structure function data in next to leading order in α S The polarized gluon distribution in the nucleon Jechiel Lichtenstadt.
Zhongbo Kang Los Alamos National Laboratory QCD structure of the nucleon and spin physics Lecture 5 & 6: TMD factorization and phenomenology HUGS 2015,
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Spin structure of the nucleon
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 12th International Workshop.
Physics with Muon and Hadron Beams at COMPASS Reiner Geyer for the COMPASS collaboration Hadron Structure 2009.
Andrzej Bożek (IFJ PAN, Kraków) B hadron decays to open charm production in B-factories BEACH B hadron decays to open charm at B-factories A.Bożek.
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 10th International Workshop.
General Discussion some general remarks some questions.
1 E.C. Aschenauer Recent results from lepton proton scattering on the spin structure of the nucleon.
J/  production in p+p collisions at PHENIX and gluon distribution QWG meeting at FNAL September Hiroki Sato (Kyoto University) for the PHENIX collaboration.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
B. Naroska Un. Hamburg Beauty at HERA HEP05 Lisbon 21/07/ Beauty Production at HERA HEP05 International Europhysics Conference on High Energy Physics.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
SWADHIN TANEJA (STONY BROOK UNIVERSITY) K. BOYLE, A. DESHPANDE, C. GAL, DSSV COLLABORATION 2/4/2016 S. Taneja- DIS 2011 Workshop 1 Uncertainty determination.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
The Importance of Higher Twist Corrections in Polarized DIS E. Leader, A. Sidorov, D. Stamenov, LSS 11th International Workshop on Deep Inelastic Scattering.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
Measuring the gluon polarization F.Kunne – CEA Saclay 10 th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon Beijing,
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
1 Dubna, September, 2005 Aram Kotzinian Spin effects in MC generators The spin and azimuthal asymmetries in the current and target fragmentation regions.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region.  Physics  Data Analysis  Cross Section calculation 
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
New results from Delia Hasch DPG Spring Meeting 2004 – Nuclear Physics Cologne (Germany) March, (on behalf of the HERMES Collaboration) Exotic.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Heavy Quark Production in 920GeV Proton Nucleus Interactions Michael Danilov ITEP, Moscow Representing HERA-B Collaboration Outline 1.Detector and data.
Single-spin asymmetry of charm di-jet in longitudinally polarized pp collisions at STAR Introduction and motivation Reconstruction of W and Z signals Single-spin.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
Recent results on non-DDbar decays of  (3770) at BES HaiLong Ma [For BES Collaboration] The IVIIth Rencontres de Moriond session devoted to QCD AND HIGH.
COMPASS results on inclusive and semi–inclusive polarised DIS
Hadron-structure studies at a neutrino factory
Recent results on light hadron spectroscopy at BES
Spin of the proton and orbital motion of quarks
Polarized PDF (based on DSSV) Global Analysis of World Data
Transversity Distributions and Tensor Charges of the Nucleon
Measurement of the Gluon Polarization at COMPASS
Polarized Structure Function of Nucleon and Orbital Angular Momentum
NLO QCD fits to polarized semi-inclusive DIS data
Single Spin Asymmetry with a Transversely Polarized
Determination on F and D with SU(3) symmetry breaking effects and Δs distributions in the nucleon Teruya Yamanishi.
The gluon polarisation ΔG/G at COMPASS
Pion transition form factor in the light front quark model
Recent results on DG/G from the COMPASS experiment at CERN
New measurement of G/G at COMPASS
Determination of the gluon polarisation
Nucleon spin and structure studies with COMPASS
ΔG/G Extraction From High-Pt Hadron Pairs at COMPASS
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

ΔG/G Extraction From High- P t Hadron Pairs at COMPASS Ahmed El Alaoui Nuclear Physics School, Erice, September 2007 On Behalf Of COMPASS Collaboration

Outline Introduction COMPASS Experimental Setup Data Analysis Results Summary and Conclusion

- To access the gluon contribution to the nucleon spin - To understand the role of the Axial Anomaly in the explanation of the spin crisis Nucleon Spin Naive Quark Model Pure valence description of constituent quarks: ∆u = + 4/3 ∆d = - 1/3 ∆Σ = 1 Relativistic Quark Model ∆Σ ≈ 0.75 QCD framework Hyperons β decay constants + SU(3) flavor symmetry ∆Σ = a 0 ≈ 0.60 compatible with the Relativistic QM prediction However, the EMC measured ∆Σ = 0.12 ± 0.09 ± 0.14 SPIN CRISIS a 0 = ΔΣ – (3α s /2π)ΔG A measurement of ∆G is needed

How To Acess ΔG/G Indirect Measurement: QCD analysis: fit to the nucleon spin structure function g 1 (x) Direct Measurement: ∆G/G can be accessed via Photon Gluon Fusion (PGF) process Unfortunately, the limited range in Q 2 does not allow for a precise determination of ∆G

PGF Process Two approaches are used to tag PGF process q = c: - Open Charm D 0, D * decay - Clean signal - Combinatorial background - Low statistics q = u, d, s: - High-p t hadron Pairs - Physical background - High statistics A PGF = a LL x (∆G/G) factorization theorem PGF

How To Acess ΔG/G Direct Measurement: ∆G/G can be accessed via Photon Gluon Fusion (PGF) process Three independent measurements were done at COMPASS - Open Charm - High p t hadron pairs production at Q 2 >1GeV 2 - High p t hadron pairs production at Q 2 <1GeV 2 Indirect Measurement: QCD analysis: fit to the nucleon spin structure function g 1 (x) Unfortunately, the limited range in Q 2 does not allow a for precise determination of ∆G

COMPASS Collaboration COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy 250 Physicists 18 Institutes 12 Countries

LHC SPS luminosity: ~ cm -2 s -1 beam intensity: µ+/spill (4.8s/16.2s) beam momentum: 160 GeV/c Experiment Layout

COMPASS Spectrometer Tracking: SciFi, Silicon, MicroMegas, GEMs, MWPC, Straws PID: RICH, Calorimeters, μ Filters SM1 SM2 RICH E/HCAL1 Muon Wall 1Muon Wall 2 E/HCAL2 Polarized Target 160 GeV μ beam Polarization ~ 80% 50 m long LAS SAS MicroMegas DC

COMPASS Target Two 60 cm long oppositely polarized cells 6 LiD is used as a material dilution factor ~ 0.4 Target Polarization ~ 50% 70 mrad acceptance (180 mrad for 2006 target) [cm] Vertex distribution

High P t Events Selection Primary vertex with at least μ, μ’ and 2 hadrons m inv (h 1,h 2 ) > 1.5 GeV 0.0 < z, x F < 1.0 P t > 0.7 GeV 0.1 1GeV 2 ) E Calo /P > < z 1 +z 2 < 0.95 ΣP t > 2.5 GeV < y < 0.9 (Q 2 <1GeV 2 )

High P t Spin Asymmetry The acceptance is not identical in both cells Asymmetry bias μ B A exp = (N u - N d )/(N u + N d )

High P t Spin Asymmetry Polarisation reversal each 8 hours A exp = (N u - N d )/(N u + N d ) ‘‘‘‘‘ To improve the statistical error, a weighted method is used in the asymmetry calculation: w = fDP B (event-wise weight) A || /D=(A exp - A exp )/2fP T P B D ‘ μ B μ B f Dilution factor P T(B) Target(Beam) polarization D Depolarization factor

∆G/G Extraction at Q 2 <1GeV 2

R i (fraction of the process i), a LL, ∆q, q, q and G are obtained from - Monte Carlo Simulation based on PYTHIA generator and Geant. - pQCD Calculation - pdf in the nucleon from GRSV2000 and GRV98LO parametrization - pdf in the photon from GRS parametrization The polarized pdfs in the photon ∆q and ∆G are not available. Therefore the positivity limit is used to constrain them which leads to 2 extreme scenarios. ∆G/G at Q 2 <1GeV 2 A || /D = R PGF ∆G/G a LL PGF + R qq ∆q/q a LL (∆q/q) qq γ + R qg ∆G/G a LL (∆q/q) qg γ + R gq ∆q/q a LL (∆G/G) gq γ + R gg ∆G/G a LL (∆G/G) gg γ γ γ γ Included as systematic error in the estimation of ∆G/G + R QCDC ∆q/q a LL QCDC qq’ Resolved photon processes γ

Monte Carlo vs. Data (Q 2 <1GeV 2 ) x Bj

Process fractions (Q 2 <1GeV 2 ) Resolved photons processes 50% 32% 12%

∆G/G Result at Q 2 <1GeV data A || /D = ± 0.013(stat.) ± 0.003(syst.) ∆G/G(x g,μ 2 ) = ± 0.058(stat.) ± 0.055(syst.) x g = μ 2 = 3GeV 2 Contribution to Syst. error comes from - False asymmetry - Monte Carlo tuning - Resolved photon process

∆G/G Extraction at Q 2 >1GeV 2

∆G/G at Q 2 >1GeV 2 A || /D = R PGF ∆G/G a LL + R QCDC ∆Q/Q a LL PGF QCDC + R LO ∆Q/Q a LL LO At Q 2 >1GeV 2 analysis, Lepto generator seems to describe the real data much better than PYTHIA. It was then used to estimate the fraction of each process PGF QCDC LO Contribution from resolved photon precesses is negligible in this case

Monte Carlo vs. Data at Q 2 >1GeV 2 34%

∆G/G Result at Q 2 >1GeV Data A || /D = ± 0.080(stat.) ± 0.013(syst.) ∆G/G(x g, μ 2 ) = 0.06 ± 0.31(stat.) ± 0.06(syst.) = Data Analysis is in progress… Contribution to Syst. error comes from - False asymmetry - Monte Carlo tuning μ 2 = 3GeV 2

Results ΔG/G

Summary and Conclusion - The new solenoid, installed in 2006, has an acceptance (180 mrad) three times larger than the previous one. - High-P t asymmetries at Q 2 >1GeV 2 and Q 2 <1GeV 2 were presented - The measured ∆G/G is compatible with zero at x g = Analysis of 2004 data (at Q 2 >1GeV 2 ) is almost finished. It will be released soon Double the statistics obtained in 2004 Access higher value of x g Thank you The most precise measurement up to now

Backup slides

Fit to g 1 (x) using DGLAP evolution equations provides 2 differents solutions : ∆G >0 and ∆G <0. Both solutions describe the data well. The first moment of ∆G obtained from the fit is ∆G(x g ) dx g ∫ ≈ ≡ ∆G

Muon Beam Line