Quantum Mechanics Chapter 7 §4-5. The de Broglie Relation 1924 1924 All matter has a wave-like nature… All matter has a wave-like nature… Wave-particle.

Slides:



Advertisements
Similar presentations
Where is the Electron Located?
Advertisements

CHAPTER 6 ELECTRONIC STRUCTURE OF ATOMS. CHAPTER 6 TOPICS THE QUANTUM MECHANICAL MODEL OF THE ATOM USE THE MODEL IN CHAPTER 7 TO EXPLAIN THE PERIODIC.
The Photoelectric Effect
Why are electrons restricted to specific energy levels or quantized? Louis de Broglie – proposed that if waves have particle properties, possible particles.
Lecture 2210/26/05. Moving between energy levels.
Quantum Mechanics  Bohr’s theory established the concept of atomic energy levels but did not thoroughly explain the “wave-like” behavior of the electron.
Section 3.2 – page 174. De Broglie  Proposed the dual nature of light; it could act as a particle or a wave.
Electronic Structure of Atoms Chapter 6 Chemistry 100.
1 Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Quantum Theory and the Electronic Structure of.
The Quantum Mechanical Atom CHAPTER 8 Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop.
CHEMISTRY T HIRD E DITION Gilbert | Kirss | Foster | Davies © 2012 by W. W. Norton & Company CHAPTER 7-B Quantum Numbers.
Quantum Atom. Louis deBroglie Suggested if energy has particle nature then particles should have a wave nature Particle wavelength given by λ = h/ mv.
The Wave Nature of Light. Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance.
Wave Description of Light
Chapter 6 Electronic Structure of Atoms. Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation.
Quantum Chemistry Chapter 6. Copyright © Houghton Mifflin Company. All rights reserved.6 | 2 Electromagnetic Radiation.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electromagnetic Radiation Radiant energy that exhibits wavelength-like behavior and.
Quantum Mechanics and Atomic Theory Wave models for electron orbitals.
Mullis1 Arrangement of Electrons in Atoms Principles of electromagnetic radiation led to Bohr’s model of the atom. Electron location is described using.
Unit #4 CP Chemistry.  Bohr  Quantum Numbers  Quantum Mechanical Model.
Electronic Structure of Atoms © 2009, Prentice-Hall, Inc. Chapter 7 Electronic Structure of Atoms.
-The Bohr Model -The Quantum Mechanical Model Mrs. Coyle Chemistry.
Chapter 6 Modern Atomic Theory
Chapter 5/1© 2012 Pearson Education, Inc. Wavelike Properties of Matter The de Broglie equation allows the calculation of a “wavelength” of an electron.
Wave-Particle Duality
Electronic Structure of Atoms Electronic Structure of Atoms.
Chapter 6 Electronic Structure of Atoms. The Wave Nature of Light The light that we can see with our eyes, visible light, is an example of electromagnetic.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
AP Notes Chapter 6 Atomic Structure Describe properties of electromagnetic radiation Describe properties of electromagnetic radiation Light & relationship.
Quantum Atom. Problem Bohr model of the atom only successfully predicted the behavior of hydrogen Good start, but needed refinement.
Chapter 7 Atomic Structure & Periodicity. Electromagnetic Radiation O Waves (wavelength, frequency & speed) O  c (page 342: #39) O Hertz O Max Planck.
Quantum Theory and the Electronic Structure of Atoms Chapter 6.
1 Chapter 7: Periodicity and Atomic Structure Renee Y. Becker Valencia Community College CHM 1045.
Quantum Theory Chang Chapter 7 Bylikin et al. Chapter 2.
Particles as waves and Light as particles Chapter 6 part II.
Section 3.2 – page 174. De Broglie  Proposed the dual nature of light; it could act as a particle or a wave. 
Electronic Structure of Atoms 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and Atomic Orbitals 6.6 Representation of Orbitals.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Quantum Atom. Problem Bohr model of the atom only successfully predicted the behavior of hydrogen Good start, but needed refinement.
Louis de Broglie, (France, ) Wave Properties of Matter (1923) -Since light waves have a particle behavior (as shown by Einstein in the Photoelectric.
Particle wave duality 1 Particle - Wave Duality. particle wave duality 2 Einstein’s Famous Idea in Equation Form Einstein knew that energy is involved:
The Quantum Mechanical Model Chemistry Honors. The Bohr model was inadequate.
Chapter 7: The Quantum-Mechanical Model of the Atom ( )
Quantum Theory and the Electronic Structure of Atoms
Quantum numbers and the periodic table
Quantum Theory and the Electronic Structure of Atoms
Atomic Theory.
Electronic Structure of Atoms
Quantum Model of the Atom
III. Quantum Model of the Atom (p )
The Quantum Mechanical Model
Tools of the Laboratory
Electron Clouds and Probability
Arrangement of electrons
Electron Clouds and Probability
Electrons in Atoms Chapter 5.
Electron Orbitals Heisenberg 1. The ____________ ______________ principle states that it is impossible to determine simultaneously both the position and.
III. Quantum Model of the Atom (p )
Quantum Model of the Atom
The Quantum Mechanical Model
Quantum Model of the Atom
QUANTUM MECHANICS VIEW OF THE ATOM.
III. Quantum Model of the Atom (p )
III. Quantum Model of the Atom (p )
Quantum Mechanical Atom Part II: Bohr vs
Quantum Mechanical Atom Part II: Bohr vs
Presentation transcript:

Quantum Mechanics Chapter 7 §4-5

The de Broglie Relation All matter has a wave-like nature… All matter has a wave-like nature… Wave-particle duality… Wave-particle duality… All matter and energy exhibit wave-like and particle- like properties.

The de Broglie Relation The de Broglie Equation relates the wavelength of a particle to its momentum. The de Broglie Equation relates the wavelength of a particle to its momentum. Wavelength Planck’s constant 6.626x Js Velocity, m/s Mass, kg

The de Broglie Relation Compare the wavelengths of (a) an electron traveling at a speed of one-hundredth the speed of light with (b) that of a baseball of mass kg having a speed of 26.8 m/s (60.0 mi/hr). Compare the wavelengths of (a) an electron traveling at a speed of one-hundredth the speed of light with (b) that of a baseball of mass kg having a speed of 26.8 m/s (60.0 mi/hr). (a) the electron What is the mass of an electron? What is the electron speed if it is one-hundredth the speed of light?

The de Broglie Relation Compare the wavelengths of (a) an electron traveling at a speed of one-hundredth the speed of light with (b) that of a baseball of mass kg having a speed of 26.8 m/s (60.0 mi/hr). Compare the wavelengths of (a) an electron traveling at a speed of one-hundredth the speed of light with (b) that of a baseball of mass kg having a speed of 26.8 m/s (60.0 mi/hr). (b) the baseball

The de Broglie Relation Compare the wavelengths of (a) an electron with (b) that of a baseball. Compare the wavelengths of (a) an electron with (b) that of a baseball. What does that mean? (a)The electron (2.43x m) (a)The baseball (1.71x m)

The Schroedinger Equation Schroedinger combined Planck’s photons, Einstein’s wave-particle duality, and de Broglie’s idea that all energy and matter follow the wave particle duality into one equation (the wave function) for the electron: Schroedinger combined Planck’s photons, Einstein’s wave-particle duality, and de Broglie’s idea that all energy and matter follow the wave particle duality into one equation (the wave function) for the electron: No, you don’t have to memorize it. This created the basis for Quantum mechanics.

Quantum Mechanics Quantum Mechanics of an atom are divided into four quantum numbers: Quantum Mechanics of an atom are divided into four quantum numbers: n m m s m s Principle Quantum Number – the number that represents the energy level Angular Momentum Quantum Number – Azimuthal – the number that represents the subshell Magnetic Quantum Number – the number that represents the orbital within the subshell Spin Quantum Number – the number that represents the electron’s spin

Quantum Mechanics Quantum Mechanics of an atom are divided into four quantum numbers: Quantum Mechanics of an atom are divided into four quantum numbers: n m m s m s Electron Spin: m s = – 1 / 2 OR + 1 / 2 Energy level: n = 1 - Subshell: Based on which energy level the electron is in; = 0 - (n-1) Orbital: Based on which subshell the electron is in; m = – - +

Quantum Mechanics Energy level n SubshellOrbital m Electron Spin m s 10 (s)0– 1 / 2 OR + 1 / 2 20 (s)0– 1 / 2 OR + 1 / 2 21 (p)–1, 0, +1– 1 / 2 OR + 1 / 2 30 (s)0– 1 / 2 OR + 1 / 2 31 (p)–1, 0, +1– 1 / 2 OR + 1 / 2 32 (d)–2, –1, 0, +1, +2– 1 / 2 OR + 1 / 2 40 (s)0– 1 / 2 OR + 1 / 2 41 (p)–1, 0, +1– 1 / 2 OR + 1 / 2 42 (d)–2, –1, 0, +1, +2– 1 / 2 OR + 1 / 2 43 (f)–3, –2, –1, 0, +1, +2, +3– 1 / 2 OR + 1 / 2

Let’s Practice Determine the quantum numbers for… Determine the quantum numbers for… Na Na First, write out the electron configuration. 1s 2 2s 2 2p 6 Next, write out the four quantum numbers for the last electron in the electron configuration: n = = m = m s = 3s 1 3 Since the energy level is 3 0 Since the subshell is s, which is indicated by the number 0 0 Since the orbital is in the s subshell, so the only possible value is 0. ± 1 / 2 Spin must follow Pauli’s exclusion principle

Let’s Practice Determine the quantum numbers for… Determine the quantum numbers for… W First, write out the electron configuration. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 Next, write out the four quantum numbers for the last electron in the electron configuration: n = = m = m s = 5d 4 5 Since the energy level is 5 2 Since the subshell is d, which is indicated by the number 2 +1 Since the orbital is in the 4 th orbital in the d subshell: –2. –1, 0 +1, +2. ± 1 / 2 Spin must follow Pauli’s exclusion principle

Let’s Practice Determine the quantum numbers for… Determine the quantum numbers for… Br Br First, write out the electron configuration. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 Next, write out the four quantum numbers for the last electron in the electron configuration: n = = m = m s = 4p 5 4 Since the energy level is 4 1 Since the subshell is p, which is indicated by the number 1 0 Since the orbital is in the 2 nd orbital in the p subshell: –1, ± 1 / 2 Spin must follow Pauli’s exclusion principle