10.1 – Counting by Systematic Listing One-Part Tasks The results for simple, one-part tasks can often be listed easily. Tossing a fair coin: Rolling a.

Slides:



Advertisements
Similar presentations
Probability of Compound Events
Advertisements

10.1 – Counting by Systematic Listing
T HE F UNDAMENTAL C OUNTING P RINCIPLE & P ERMUTATIONS.
15.2 Counting Methods: Permutations
How many possible outcomes can you make with the accessories?
12.1 & 12.2: The Fundamental Counting Principal, Permutations, & Combinations.
Permutations and Combinations AII Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish.
Expected value a weighted average of all possible values where the weights are the probabilities of each outcome :
Counting Principles and Probability Digital Lesson.
40S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Probability Lesson: PR-4 Fundamental Counting Principle Fundamental Counting Principle Learning.
Math-2 Lesson 10-1 Probability. Definitions Sample Space: the set of all possible outcomes for an experiment. Outcome: A possible result of a probability.
Confidential2 Warm Up 1.Tossing a quarter and a nickel 2. Choosing a letter from D,E, and F, and a number from 1 and 2 3.Choosing a tuna, ham, or egg.
The Fundamental Counting Principal, Permutations, & Combinations.
Chapter 12 – Probability and Statistics 12.1 – The Counting Principle.
T HE F UNDAMENTAL C OUNTING P RINCIPLE & P ERMUTATIONS.
(13 – 1) The Counting Principle and Permutations Learning targets: To use the fundamental counting principle to count the number of ways an event can happen.
The Fundamental Counting Principal - Permutations - Factorials.
Chapter 11 Counting Methods © 2008 Pearson Addison-Wesley. All rights reserved.
Permutations and Combinations. Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish permutations.
Methods of Counting Outcomes BUSA 2100, Section 4.1.
Sec. 1.6 Probability Objective: Students set up probability equations appropriately.
Permutations, Combinations, and Counting Theory AII.12 The student will compute and distinguish between permutations and combinations and use technology.
© The McGraw-Hill Companies, Inc., Chapter 4 Counting Techniques.
Chapter 11 Counting Methods © 2008 Pearson Addison-Wesley. All rights reserved.
SECTION 10-2 Using the Fundamental Counting Principle Slide
Lesson 8.6 Page #1-21 (ODD), (EOO), (ODD), (EOO), (ODD) Pick up the handout on the table.
Transparency 3 Click the mouse button or press the Space Bar to display the answers.
Permutations and Combinations
Permutations and Combinations. Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish permutations.
Permutations, Combinations, and Counting Theory
9.6 The Fundamental Counting Principal & Permutations.
Lesson 0.4 (Counting Techniques)
Counting Techniques Tree Diagram Multiplication Rule Permutations Combinations.
HAWKES LEARNING Students Count. Success Matters. Copyright © 2015 by Hawkes Learning/Quant Systems, Inc. All rights reserved. Section 7.2 Counting Our.
Permutations and Combinations
Permutations and Combinations AII Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish.
AP STATISTICS LESSON AP STATISTICS LESSON PROBABILITY MODELS.
Quiz: Draw the unit circle: Include: (1)All “nice” angles in degrees (2) All “nice” angles in radians (3) The (x, y) pairs for each point on the unit circle.
 2012 Pearson Education, Inc. Slide Chapter 10 Counting Methods.
Permutations and Combinations. Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another.
13 Lesson 1 Let Me Count the Ways Fundamental Counting Principle, Permutations & Combinations CP Probability and Statistics FA 2014 S-ID.1S-CP.3S-CP.5.
Permutations and Combinations
Counting Unit 1.
4-1 Chapter 4 Counting Techniques.
Permutations and Combinations
12-6 Counting Principle and Permutations
Counting Principle and Permutations
Chapter 0.4 Counting Techniques.
4-1 Chapter 4 Counting Techniques.
4-1 Chapter 4 Counting Techniques.
12.1 The Fundamental Counting Principle & Permutations
Chapter 10 Counting Methods.
Permutations and Combinations
Permutations and Combinations
Lesson 11-1 Permutations and Combinations
Permutations and Combinations
Permutations and Combinations
Permutations and Combinations
How many possible outcomes can you make with the accessories?
12-6 Counting Principle and Permutations
Chapter 10 Counting Methods.
4-1 Chapter 4 Counting Techniques.
Bellwork Practice Packet 10.3 B side #3.
Chapter 10 Counting Methods 2012 Pearson Education, Inc.
Permutations and Combinations
Standard DA-5.2 Objective: Apply permutations and combinations to find the number of possibilities of an outcome.
Permutations and Combinations
Lecture 7: Permutations and Combinations
Permutations and Combinations
Presentation transcript:

10.1 – Counting by Systematic Listing One-Part Tasks The results for simple, one-part tasks can often be listed easily. Tossing a fair coin: Rolling a single fair die Heads or tails 1, 2, 3, 4, 5, 6 Consider a club N with four members: There are four possible results: In how many ways can this group select a president? M, A, T, and H. N = {Mike, Adam, Ted, Helen}or N = {M, A, T, H}

10.1 – Counting by Systematic Listing Product Tables for Two-Part Tasks Determine the number of two-digit numbers that can be written using the digits from the set {2, 4, 6}. The task consists of two parts: 1. Choose a first digit 2. Choose a second digit The results for a two-part task can be pictured in a product table. Second Digit First Digit possible numbers

10.1 – Counting by Systematic Listing Product Tables for Two-Part Tasks What are the possible outcomes of rolling two fair die?

10.1 – Counting by Systematic Listing Product Tables for Two-Part Tasks Find the number of ways club N can elect a president and secretary. The task consists of two parts: 1. Choose a president2. Choose a secretary Secretary MATH Pres.M A T H N = {Mike, Adam, Ted, Helen}or N = {M, A, T, H} HHHM TM AM MM AH MHMTMA ATAA THTTTA HTHA 12 outcomes

10.1 – Counting by Systematic Listing Product Tables for Two-Part Tasks Find the number of ways club N can elect a two member committee. Secretary MATH Pres.M A T H N = {Mike, Adam, Ted, Helen}or N = {M, A, T, H} HH HM TM AM MM AH MHMTMA ATAA THTT TA HTHA 6 committees

10.1 – Counting by Systematic Listing Tree Diagrams for Multiple-Part Tasks A task that has more than two parts is not easy to analyze with a product table. Another helpful device is a tree diagram. Find the number of three digit numbers that can be written using the digits from the set {2, 4, 6} assuming repeated digits are not allowed. A product table will not work for more than two digits. Generating a list could be time consuming and disorganized.

10.1 – Counting by Systematic Listing Tree Diagrams for Multiple-Part Tasks Find the number of three digit numbers that can be written using the digits from the set {2, 4, 6} assuming repeated digits are not allowed st #2 nd #3 rd # possibilities

10.1 – Counting by Systematic Listing Other Systematic Listing Methods There are additional systematic ways to produce complete listings of possible results besides product tables and tree diagrams. A B C D E F How many triangles (of any size) are in the figure below? One systematic approach is begin with A, and proceed in alphabetical order to write all 3-letter combinations (like ABC, ABD, …), then cross out ones that are not triangles and those that repeat. Another approach is to “chunk” the figure to smaller, more manageable figures. There are 12 triangles.

10.2 – Using the Fundamental Counting Principle Uniformity Criterion for Multiple-Part Tasks: A multiple part task is said to satisfy the uniformity criterion if the number of choices for any particular part is the same no matter which choices were selected for previous parts. Find the number of three letter combinations that can be written using the letters from the set {a, b, c} assuming repeated letters are not allowed. 2 dimes and one six-sided die numbered from 1 to 6 are tossed. Generate a list of the possible outcomes by drawing a tree diagram. A computer printer allows for optional settings with a panel of five on-off switches. Set up a tree diagram that will show how many setting are possible so that no two adjacent switches can be on? Uniformity exists: Uniformity does not exists:

Uniformity a c c abc 1 st letter2 nd letter3 rd letter b c b a c a b b c a b a acb bac bca cab cba 6 possibilities 10.2 – Using the Fundamental Counting Principle Find the number of three letter combinations that can be written using the letters from the set {a, b, c} assuming repeated letters are not allowed.

Uniformity 1 d1 Die # Dime 12 possibilities 10.2 – Using the Fundamental Counting Principle 2 dimes and one six-sided die numbered from 1 to 6 are tossed. Generate a list of the possible outcomes by drawing a tree diagram d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 1 d2 2 d1 2 d2 3 d1 3 d2 4 d1 4 d2 5 d1 5d2 6 d1 6 d2

Uniformity does not exist 1 st switch2 nd switch3 rd switch f o o f o f o f 10.2 – Using the Fundamental Counting Principle A computer printer is designed for optional settings with a panel of three on-off switches. Set up a tree diagram that will show how many setting are possible so that no two adjacent switches can be on? (o = on, f = off) o f o f o f

10.2 – Using the Fundamental Counting Principle Fundamental Counting Principle The principle which states that all possible outcomes in a sample space can be found by multiplying the number of ways each event can occur. Example: At a firehouse fundraiser dinner, one can choose from 2 proteins (beef and fish), 4 vegetables (beans, broccoli, carrots, and corn), and 2 breads (rolls and biscuits). How many different protein-vegetable-bread selections can she make for dinner? Proteins Vegetables Breads 242  = 16 possible selections

10.2 – Using the Fundamental Counting Principle Example At the local sub shop, customers have a choice of the following: 3 breads (white, wheat, rye), 4 meats (turkey, ham, chicken, bologna), 6 condiments (none, brown mustard, spicy mustard, honey mustard, ketchup, mayo), and 3 cheeses (none, Swiss, American). How many different sandwiches are possible? Breads Meats Condiments Cheeses 34 6   = 216 possible sandwiches 3 

10.2 – Using the Fundamental Counting Principle Example: Consider the set of digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (a) How many two digit numbers can be formed if repetitions are allowed? (b) How many two digit numbers can be formed if no repetitions are allowed? (c) How many three digit numbers can be formed if no repetitions are allowed? 1 st digit 2 nd digit  = 1 st digit 2 nd digit  = 1 st digit 2 nd digit 3 rd digit 998  =648

10.2 – Using the Fundamental Counting Principle Example: (a) How many five-digit codes are possible if the first two digits are letters and the last three digits are numerical? 1 st digit 2 nd digit 3 rd digit 4 th digit 5 th digit possible five-digit codes    (a) How many five-digit codes are possible if the first two digits are letters and the last three digits are numerical and repeats are not permitted? 1 st digit 2 nd digit 3 rd digit 4 th digit 5 th digit possible five-digit codes  8 9  

10.2 – Using the Fundamental Counting Principle Factorials For any counting number n, the product of all counting numbers from n down through 1 is called n factorial, and is denoted n!. For any counting number n, the quantity n factorial is calculated by: n! = n(n – 1)(n – 2)…(2)(1). Examples: a) 4! b) (4 – 1)! c) 43214321 24 3! 321321 6 5454 20 = = Definition of Zero Factorial: 0! = 1

10.2 – Using the Fundamental Counting Principle Example: Arrangements of Objects Factorials are used when finding the total number of ways to arrange a given number of distinct objects. The total number of different ways to arrange n distinct objects is n!. How many ways can you line up 6 different books on a shelf? 6 54  2 3   1  720 possible arrangements

10.2 – Using the Fundamental Counting Principle Example: 9! 3! 2!  possible arrangements Arrangements of n Objects Containing Look-Alikes The number of distinguishable arrangements of n objects, where one or more subsets consist of look-alikes (say n 1 are of one kind, n 2 are of another kind, …, and n k are of yet another kind), is given by Determine the number of distinguishable arrangements of the letters of the word INITIALLY. 9 letterswith 3 I’sand 2 L’s