„CONTROLDER“ (Control of microstructure in solders) G.J.Schmitz presented at the COST 531 WG6 meeting Berlin, January 14 th 2003 ACCESS Materials&Processes.

Slides:



Advertisements
Similar presentations
Acero 2000 PHYSICAL METALLURGY AND THERMAL PROCESSING OF STEEL
Advertisements

Low-Cycle Fatigue Behavior of Lead-Free Solder
MatSE 259 Exam 1 Review Session 1.Exam structure – 25 questions, 1 mark each 2.Do NOT forget to write your student I.D. on the answer sheet 3.Exams are.
TT COST MP0602 meeting, Brno “MatPack” – deposition, modelling and characterisation of high melting point lead-free micro solders Peter T. Tang IPU.
DICTRA Mobility Database for Zr alloys C. Toffolon-Masclet, C. Desgranges and J.C. Brachet CEA Saclay, France C. Toffolon-Masclet et al., CALPHAD XLI,
Materials and Manufacturing in Electronics Prof. Dr.-Ing. Jürgen Villain University of Applied Sciences Augsburg, Germany Department of Electrical Engineering.
Combined thermal, solutal and momentum transport. Assume a rigid mold. Imperfect contact and air gap formation at metal/mold interface Design of mold surface.
On Pb-free (solder) Interconnections for High-Temperature Applications A.A. Kodentsov Laboratory of Materials and Interface Chemistry, Eindhoven University.
PART 2 : HEAT TREATMENT. ALLOY SYSTEMS STEELS ALUMINUM ALLOYS TITANIUM ALLOYS NICKEL BASE SUPERALLOYS.
1 Deformation and damage of lead free materials and joints J. Cugnoni*, A. Mellal*, Th. J. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Laser Treatment Modeling Capabilities at Rensselaer-Hartford Ernesto Gutierrez-Miravete Rensselaer at Hartford
Physical and Mechanical Characteristics of Pb-free Solder - Copper Joints Project funded by OFES (Switzerland) Within the framework of :Cost Action 531:
Dislocations and Strengthening
E. Ricci, D. Giuranno, F. Gnecco, S. Amore, T. Lanata, R. Novakovic
1 Deformation and damage of lead free materials and joints J. Cugnoni*, A. Mellal*, Th. J. J. Botsis* * LMAF / EPFL EMPA Switzerland.
CENG151 Introduction to Materials Science and Selection
Mechanical characterization of lead- free solder joints J. Cugnoni*, A. Mellal*, Th. J. Pr. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Development of microstructure.
An affordable creep-resistant nickel-base alloy for power plant Franck Tancret Harry Bhadeshia.
Refractories Research at Polytech’Orléans : Design, Corrosion and Thermo- mechanical Modelling.
Corrosion in active state Jacek Banaś J. Banaś, Corrosion Resistant Alloys. Fundamental Aspects of Material Selection, in Metallurgy on the Turn of the.
Aluminum 7075 Microstructure and Current Research through the use of In-situ X-ray Diffraction By: Jay Schuren.
Examples of Aluminium Fractography
Solidification and Heat Treatment
Nano Technology for Microelectronics Packaging
Microstructure Evolution of Semi-solid Magnesium Alloy AZ91D Under Electric Current Y Yang, Q Zhou, J Tang, Z Hu Institute of Metal Research Chinese Academy.
Subprogramme 6: Physical modelling and separate effect experiments for fuels (M4F) Marjorie Bertolus CEA, DEN, Centre de Cadarache SP6 coordinator.
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Growth of Solid Equilibrium.
Materials science I - Metallic materials Metallic materials Solid state atomic structure atomic arrangement microstructure macrostructure Pure materials.
Dispersion Strengthening by Heat Treatment Chapter 11a – 4 th Edition Chapter 12a- 5 th Edition.
Molecular Dynamics Study of Solidification in the Aluminum-Silicon System Supervisor: Dr. Jeffrey J Hoyt Peyman Saidi Winter 2013.
Microstructure and Phase Transformations in Multicomponent Systems
Table 1.1 Maximum possible number of electrons in the shells and subshells of an atom
Study of the Sn-Zn-X alloys for solder applications in the electronic industry Study of the Sn-Zn-X alloys for solder applications in the electronic industry.
CHE 333 Class7 Precipitation Hardening Nobel Prize in Physics Materials breakthrough wins Nobel By Paul RinconScience reporter, BBC NewsAndre Geim.
MME 340 PHASE TRANSFORMATIONS IN MATERIALS ANANDH SUBRAMANIAM Materials Science and Engineering INDIAN INSTITUTE OF TECHNOLOGY KANPUR New Delhi
Modification of Properties of Aluminium Alloys by Surface Segregation of Nanoscale Trace Element Particles
University of Adelaide -Cooperative Research Centre for Welded Structures CRC-WS Microstructures in (High Strength) Steel Welds.
Introduction to Materials Science, Chapter 7, Dislocations and strengthening mechanisms University of Virginia, Dept. of Materials Science and Engineering.
Performance of W/Cu FGM in edge plasma of HT-7 tokamak Zhu Dahuan Liu yang Chen Junling Institute of plasma physics, Chinese Academic of Science, China.
1. Introduction Assoc.Prof.Dr. Ahmet Zafer Şenalp Mechanical Engineering Department Gebze Technical.
1 1 Figure 10.1 Considerations for effective dispersion strengthening: (a) The precipitate phase should be hard and discontinuous. (c)2003 Brooks/Cole,
Thermo-Calc Software MGI – the challenges and opportunities for CALPHAD NIST Diffusion Workshop May 9 and 10, 2013 P K Mason Thermo-Calc.
Mechanical & Aerospace Engineering West Virginia University 9 – Phase Diagram (2) (Phase Reactions)
Precipitation Hardening
Thermodynamic data A tutorial course Session 6: Modelling Surface Tension Alan Dinsdale “Thermochemistry of Materials” SRC.
EBB 512 – Phase Diagram and Equilibria Lecture 1.
Lecture 7 Review of Difficult Topics MATLS 4L04: Aluminum Section.
MatCalc approach for the modelling of the vacancy concentration evolution (MatCalc ) P. Warczok.
MatSE 259 Exam 1 Review Session 1.Exam structure – 25 questions, 1 mark each 2.Do NOT forget to write your student I.D. on the answer sheet 3.Exams are.
6.1.3 In Situ Fabrication Techniques -Controlled unidirectional solidification of a eutectic alloy can result in a two-phase microstructure with one of.
MIT Microstructural Evolution in Materials 12: Nucleation
Noteworthy advantages of using aluminum alloys
Dr. Jin Liang, Dr. Nader Dariavach
Metals & Alloys.
METALS Recap: metallic bonds, metal properties Summary
Research on fatigue of materials at IPM
© 2016 Cengage Learning Engineering. All Rights Reserved.
Advanced Solder Materials for High temperature Application -HISOLD
Laser Effects on IFE Final Optics
Precipitation Hardening
Growth Kinetics Byeong-Joo Lee Microstructure Evolution POSTECH - MSE
Atomistic simulations of contact physics Alejandro Strachan Materials Engineering PRISM, Fall 2007.
Atomistic materials simulations at The DoE NNSA/PSAAP PRISM Center
Posibilities of strength-enhancing
Single solid phase binary alloy -1
MIT Microstructural Evolution in Materials 14: Interface Stability
Eutectic Type Phase Diagrams
MATERIALS SCIENCE Materials science investigates the relationships between the structures and properties of materials.
CREEP CREEP Dr. Mohammed Abdulrazzaq Materials Engineering Department.
Presentation transcript:

„CONTROLDER“ (Control of microstructure in solders) G.J.Schmitz presented at the COST 531 WG6 meeting Berlin, January 14 th 2003 ACCESS Materials&Processes Intzestr 5 D Aachen, Germany

private,non-profit research association, originated from Foundry Institute of RWTH Aachen in 1986 annual turnover 2001 approx 5 million € actually approx. 60 employees (35 scientists, > 7 disciplines) interests in materials& processes : „anything related to solidfication“

Materials Processes and

MICRESS active: M. Apel B. Böttger H.-J. Diepers J. Eiken (Tiaden) P. Schaffnit I. Steinbach N. Warnken former (or less active) S.G.Fries U. Grafe U.Hecht B. Nestler F. Pezzolla G.J.Schmitz M. Seeßelberg V.Vitusewych

The "Aachen" Phase Field Model real systemthermodynamicsinterfaces diffusion =+ +

Results of H.J.Diepers Directional Growth of a 3-D Dendrite in Al-Si7 200  m r = 3  m  T = 20 K/mm v = 5 mm/s anisotropy 30% in kinetics

Results of B.Böttger Coupling with Thermodynamic Databases (II) IN706 dT/dt = -0,5K/s = 200  m x(Nb) %

Results of B.Böttger Coupling with Thermodynamic Databases (III) IN706

Results of M.Apel Ternary Eutectics Eutectic compositon: Liquid:Al, at%=69,9647 Ag, at%=16,9674 Cu, at%=13,0679 T e =775,71 K System Al-Ag-Cu

fcc + hcp +  CuAg Results of M.Apel

Ternary eutectics: EXPERIMENTAL example: Ag-Cu-Zn

former and present areas of activity related to solders –melt atomization of BiSn powders –solder contacts to superconductors –solder contacts to solar cells –soldering of single crystalline superalloys –laser surface welding –directional solidification studies Bi-In-Sn system future activities –„CONTROLDER“ : Experiments, Analytics, Microsimulation –„NOPLEES“:Thermodynamics

macroscopic issues of solder joints sessile drop experiments/wetting mesoscopic self-assembly solidification in confined geometries microstructure formation in solder alloys directional solidification thermal cycling doping effects interaction with solder pads generation/avoidance of precipitates others..... numerical simulations microstructure evolution thermoelectric aging „Controlder“ OBJECTIVES To propose and to develop effective means to control microstructure formation in solder joints

NOPLEES- No Plumbum Equilibrium and Environment Search Ag-Al-Cu, Ag-Al-Zn, Ag-Cu-Zn, Al-Cu-ZnTernary Ag-Al, Ag-Cu, Ag-Zn, Al-Cu, Al-Zn, Cu-ZnBinary Systems with Cu Relevant for Soldes and Substrate, Ag - Al - Cu - Zn Ag-Al-Mg, Ag-Al-Sn, Ag-Al-Zn, Ag-Mg-Sn, Ag-Mg-Zn, Ag-Sn-Zn, Al-Mg-Sn, Al-Mg-Zn, Al-Sn-Zn, Mg-Sn-Zn Ternary Ag-Al, Ag-Mg, Ag-Sn, Ag-Zn, Al-Mg, Al-Sn, Al-Zn, Mg-Sn, Mg-Zn, Sn-ZnBinary Additional Set to Investigate New Solder Alloys, Ag - Al - Mg - Sn - Zn Ag-Bi-Pb, Ag-Bi-Tl, Ag-Pb-Tl, Bi-Pb-TlTernary Ag-Bi, Ag-Cu, Ag-Pb, Ag-Tl, Bi-Cu, Bi-Pb, Bi-TlBinary Updated Systems (Zimmermann 1976) Relevant for Solders: Ag - Bi - Cu - Pb - Tl Ag-Bi-Cu, Ag-Bi-Sn, Ag-Cu-Sn, Bi-Cu-Pb, Bi-Pb-Sn, Ag-Bi-Pb, Ag-Cu-Pb, Ag-Pb-Sn, Bi-Cu-Sn, Cu-Pb-Sn Ternary Ag-Bi, Ag-Pb, Bi-Cu, Bi-Sn, Cu-Sn, Ag-Cu, Ag-Sn, Bi-Pb, Cu-Pb, Sn-PbBinary NIST Solder Database: Ag - Bi - Cu - Sn - Pb

NOPLEES Coordination: Suzana G. Fries Partners: Finacial and Scientific Support Agencies Dr. Matsvei Zinkevich Dr. Marie-Christine Record

„Noplees“ and „Controlder“ Status Controlder: focus on experimental work and microstructure control no national project submitted by now open for collaboration Noplees: bilateral German (Aachen,Stuttgart) -French (Montpellier) project submitted end Jan 2002 (CERC3, DFG-CNRS) focus on thermodynamics tentative duration : 3 years final decision on funding still pending

Possible Collaborative Groupings Melt composition/Thermodynamics: WG 1+2, TU Chemnitz (D12), Univ Sofia (BG1), Univ. Metz (F4), Univ Krakow(PL2), Chalmers (S1), ACCESS (D2) Processing : general Siemens (D9), solid state processing : solderpaste printing Univ Dresden (D11) diffusion soldering Polish Academy (PL1), transient LiquidPhase Sintering Univ Waterloo (CDN4) melt properties: elctrical conductivity Univ. Metz (F4), viscosity, surface tension, density Univ. Metz (F4), TU Chemnitz (D14), Univ Krakow (PL2, PL4) dopants TU Chemnitz (D12), Univ Sofia (BG1), ACCESS (D3), Chalmers (S1) nucleation: seed additions Univ. Metz (F4), thermal history TU Chemnitz (D14) Univ. Metz (F4), process atmosphere: Univ Sofia (BG1) Univ Dresden (D11), ACCESS (D3)

Possible Collaborative Groupings Microstructure analysis: TU Chemnitz (D12), Univ Toronto (CDN2), ACCESS (D3), TU Dresden (D10) Univ Krakow(PL2) Slovak Academy (SK1) Open Univ (UK2) Univ Bordeaux (F5), solidification T-t schedules: TU Chemnitz (D12), whisker formation Shipley (CH3), ACCESS (D3), Univ. Metz (F4), ICMCB (F6) Slovak Academy (SK1) Open Univ (UK5) Univ Waterloo (CDN5), Univ Dresden (D11) solidifcation boundary conditions: PWB: Slovak Academy (SK1)Univ Toronto (CDN3), Univ Waterloo (CDN5), Univ Dresden (D11) Siemens (D8), component Univ Dresden (D11)Siemens (D8), geometry ACCESS (D3), size Polish Academy (PL1) Univ Augsburg (D7), Univ Vienna(A3), ACCESS (D3), composition Univ Toronto (CDN2) Shipley (CH3), ACCESS (D3), wetting TU Chemnitz (D12), TU Chemnitz (D14), Univ. Metz (F4), Univ Krakow(PL2) Slovak Academy (SK1), solid state transformations: recrystallization/grain growth Univ Toronto (CDN2) Open Univ (UK5)

Possible Collaborative Groupings Characterization / Reliability: general Siemens (D8), aging : long term heat treatments TU Chemnitz (D12) TU Dresden (D10) Univ Dresden (D11) Univ Waterloo (CDN5) Univ Bordeaux (F5), thermal cycling/fatigue Univ. Toronto (CDN1) Chalmers (S1), Siemens (D9) Univ Vienna(A3), Fraunhofer IZM (D4) Fraunhofer IZM (D5) Univ Berlin (D6) Open Univ (UK1) cyclic mechanical load: Univ Augsburg (D7), Siemens (D9) Fraunhofer IZM (D5) creep TU Dresden (D10), ICMCB (F6), Open Univ (UK2) Fraunhofer IZM (D5) Univ Berlin (D6) mechanical properties EMPA (CH2) Siemens (D9), Univ Krakow(PL2) Chalmers (S1) Slovak Academy (SK1) Open Univ (UK2) Univ Vienna(A3), electrical properties Siemens (D9), Univ Krakow(PL2) Chalmers (S1) thermal properties Slovak Academy (SK1) stresses/cracking Univ Augsburg (D7) Open Univ (UK1) corrosion EMPA (CH2) Chalmers (S1)

Possible Collaborative Groupings Modelling/Simulation analytic expressions Open Univ (UK2) melt properties: TU Chemnitz (D14) microstructure formation: ACCESS (D3), Bulgarian Academy (BG2), Fraunhofer IZM (D4) creep Siemens (D9), fatigue Chalmers (S1), Bulgarian Academy (BG2) stresses - strains Univ Berlin (D6) thermomechanical Fraunhofer IZM (D5) Univ Berlin (D6) Univ Bordeaux (F5), mechanistic history Open Univ (UK2) thermoelectric history ACCESS (D3) :

Thermoelectric modelling

Current distributions in multiphase systems: effects on electric load on life-time

75% of 220 crystals well- oriented over the area 8-9 mm 2 1 mm Confined spaces/self-assembly ab Twin plane E.A.Goodilin, E.S.Reddy, J.G.Noudem,M.Tarka,G.J.Schmitz Journal of Crystal Growth 241(2002)512 H.O.Jacobs, A.R.Tao, A.Schwartz, D.H.Gracias,G.M.Whitesides Science 296(2002)323 (April 2002)