Doc.: IEEE 802.11-04/1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC)

Slides:



Advertisements
Similar presentations
Doc.: IEEE /1105r0 Submission September 2004 Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Q and A of Proposed 3-Dimensional Joint Interleaver.
Advertisements

Doc.: IEEE /792r1 Submission Slide 1 André Bourdoux (IMEC) July 2004 Transmit processing: a viable scheme for MIMO-OFDM in n André Bourdoux.
Doc.: IEEE /0786r0 Submission July 2010 Daewon Lee, LG ElectronicsSlide 1 Pilot Sequence design up to 8 Spatial Streams Date: Authors:
Cyclic Shift Diversity Design for IEEE aj (45GHz)
A Framework for MIMO Operation over mmWave Links
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
Doc.: IEEE n Submission Jan 2004 M.Faulkner, ATcrcSlide 1 Low Overhead Pilot Structures Igor Tolochko and Mike Faulkner, ATcrc, Victoria.
Doc.: IEEE /0013r0 Submission January 2004 Ravi Mahadevappa, Stephan ten Brink, Realtek Slide 1 “On/off”-Feedback Schemes for MIMO-OFDM n.
Submission doc.: IEEE / 0431 r0 March 2015 Dmitry Cherniavsky, SiBEAM, Inc.Slide 1 Shared MIMO Architecture for ay. Date: Authors:
Doc.: IEEE /0705r2 Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015 Slide 1Jianhan Liu (MediaTek)
10 th MCM - Novi Sad, March 2006 Joaquim Bastos ( ) 1 The information in this document is provided as is and no guarantee or warranty.
Doc.: IEEE /1227r3 SubmissionSlide 1 OFDMA Performance Analysis Date: Authors: Tianyu Wu etc. MediaTek Sept 2014 NameAffiliationsAddressPhone .
MIMO-OFDM MIMO MIMO High diversity gain (space-time coding) High diversity gain (space-time coding) High multiplexing gain (BLAST) High multiplexing gain.
12- OFDM with Multiple Antennas. Multiple Antenna Systems (MIMO) TX RX Transmit Antennas Receive Antennas Different paths Two cases: 1.Array Gain: if.
Doc.: IEEE /0538r0 Submission May 2009 Eldad Perahia, Intel CorporationSlide 1 Investigation into the n Doppler Model Date: Authors:
Doc.: IEEE /1391r0 Submission Nov Yakun Sun, et. Al.Slide 1 About SINR conversion for PHY Abstraction Date: Authors:
Doc.: IEEE /0705r1 Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015 Slide 1Jianhan Liu, et.
Improvements in throughput in n The design goal of the n is “HT” for High Throughput. The throughput is high indeed: up to 600 Mbps in raw.
Doc.: IEEE /0364r1 SubmissionEldad Perahia, Intel CorporationSlide 1 Date: Authors: Antenna Array Gain from Measured Data for n/ac.
Doc.: IEEE /180r0 Submission March 2002 Monisha Ghosh, et al., Philips Slide 1 On The Use Of Multiple Antennae For Monisha Ghosh, Xuemei.
Doc.: IEEE /934r1 Submission September 2004 Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 A 3-Dimensional Joint Interleaver for n.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Doc.: IEEE /1484r1 Submission November 2011 Hongyuan Zhang, et. Al.Slide 1 11ah Data Transmission Flow Date: Authors:
Multiuser OFDM with Adaptive Subcarrier, Bit and Power Allocation (IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 10, OCTOBER 1999)
Doc.: IEEE /1401r0 Submission November 2014 Slide 1 Shiwen He , Haiming Wang Quasi-Orthogonal STBC for SC-PHY in IEEE aj (45GHz) Authors/contributors:
Doc.: IEEE /314r0 Submission March 2004 Taehyun Jeon, ETRISlide 1 Adaptive Modulation for MIMO-OFDM Systems Taehyun Jeon, Heejung Yu, and Sok-kyu.
Doc.: IEEE /1645r2 Submission January 2005 C. Hansen, BroadcomSlide 1 Preambles, Beamforming, and the WWiSE Proposal Notice: This document has.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: IEEE /663r3 Submission May 2012 Zhanji Wu, et. Al.Slide 1 Low-rate compatible BCC for IEEE ah lowest MCS Date: Authors:
Doc.: IEEE /0112r0 Zhanji Wu, et. Al. January 2013 Submission Joint Coding and Modulation Diversity for the Next Generation WLAN Date:
Doc.: IEEE hew Submission March 2014 Submission Zhanji Wu, et. Al. Joint Coding and Modulation Diversity with RBD pre-coding MU-MIMO Date:
CJK-B3G #11 2 and 4 Tx MIMO System April 2006.
Submission doc.: IEEE /1347r0 November 2015 Filippo Tosato, ToshibaSlide 1 Strategies to reduce MIMO feedback overhead Date: Authors:
Doc.: IEEE /1229r1 Submission November 2009 Alexander Maltsev, IntelSlide 1 Application of 60 GHz Channel Models for Comparison of TGad Proposals.
Doc.: IEEE /0929r1 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: aj Submission November 2014 Slide 1 Shiwen He , Haiming Wang Quasi-Orthogonal STBC for IEEE aj ( 45GHz ) Authors/contributors:
Submission doc.: IEEE /0103r0 January 2016 Assaf KasherSlide 1 Beamforming Training proposals Date: Authors:
Doc.: IEEE /0161r1 Submission doc.: IEEE /0806r0 K. Ishihara et al.,(NTT) Slide 1 July 2010 Slide 1 CSI Feedback Scheme using DCT for.
Doc.: IEEE /229r1 Submission March 2004 Alexandre Ribeiro Dias - Motorola LabsSlide 1 Multiple Antenna OFDM solutions for enhanced PHY Presented.
Doc.: IEEE 11-04/0304r0 Submission March 2004 John S. Sadowsky, Intel PER Prediction for n MAC Simulation John S. Sadowsky (
Doc.: IEEE /553r0 Submission May 2004 Ravi Mahadevappa, Stephan ten Brink, Realtek Slide 1 MIMO Mode Table for n Ravi Mahadevappa,
Doc.: IEEE /0632r1 Submission May 2016 Intel CorporationSlide 1 Performance Analysis of Robust Transmission Modes for MIMO in 11ay Date:
A REVIEW: PERFORMANCE ANALYSIS OF MIMO-WiMAX AKANKSHA SHARMA, LAVISH KANSAL PRESENTED BY:- AKANKSHA SHARMA Lovely Professional University.
Space Time Codes.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Discussions on 11ac PHY Efficiency
Comparisons of Simultaneous Downlink Transmissions
Maximum Tone Grouping Size for ax Feedback
September 2004 doc.: IEEE n September 2004
Transmit diversity for MIMO-OFDM
Maximum Tone Grouping Size for ax Feedback
MIMO-OFDM with antenna selection
Maximum Tone Grouping Size for ax Feedback
Quantized Precoding with Feedback 11n Partial Proposal
OFDMA Performance Analysis
Partial MAC and PHY Proposal for n
Partial MAC and PHY Proposal for n
ETRI Proposal to IEEE TGn
Optimized MIMO Aryan Saed, Jung Yee, Jim Wight
Discussions on 11ac PHY Efficiency
May 2016 doc.: IEEE /XXXXr0 May 2016
Interleaver Performance Comparison of Winbond and TGn Sync
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
Interleaver Performance Comparison of Winbond and TGn Sync
CSI Feedback Scheme using DCT for Explicit Beamforming
STBC in Single Carrier(SC) for IEEE aj (45GHz)
Preambles, Beamforming, and the WWiSE Proposal
Multiple Antenna OFDM solutions for enhanced PHY
Strawmodel ac Specification Framework
HNS Proposal for n Physical Layer
Presentation transcript:

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems Jeng-Hong Chen Pansop Kim Winbond Wireless Design Center Torrance, CA, USA October 2004 (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1)

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 2 Generalized Sub-Carrier Based Circulation (Sub_BC)

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 3 Summary I: Alamouti or SMX v.s. CSMX (Sub_BC) Sub_BC outperforms Alamouti (Rate=1) in PER Sub_BC without one OFDM symbol decoding (STBC) delay The transmit diversity gain (up to 8dB at 10% PER or more at 1% PER in channel B) from CSMX over SMX will –reduce the required high EVM at TX –reduce the required high SNR at RX Sub_BC can be implemented to 2xN Alamouti (Rate=1) –For example: 2xN ALA v.s. 2(M)xN CALA in 04/934r2. Rate 4(M)xN, M>4 can be implemented to relax the required SNR to support high data rates with four spatial streams if necessary.

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 4 Summary II: Sub_BC v.s. Beamforming (BF) Do not require feedback of CSI from RX to TX Do not require that the channel is reciprocal All MAC/PHY feedback modes required for BF in IEEE-04/889r0 can be eliminated. Simpler MAC without feedback modes greatly improves the MAC efficiency (i.e., throughput) and complexity.

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 5 Simulation Results Part I: 20MHz, 48 data subcarriers, 3D Interleaver –I.1.1: Alamouti v.s. 1(M) CSMX, channel B –I.1.2: Alamouti v.s. 1(M) CSMX, channel E –I.2.1: SMX v.s. CSMX, channel B –I.2.2: SMX v.s. CSMX, channel E Part II: 40MHz, 108 data subcarriers, 3D-A Interleaver –II.1.1: Alamouti v.s. 1(M) CSMX, channel B –II.1.2: Alamouti v.s. 1(M) CSMX, channel E –II.2.1: SMX v.s. CSMX, channel B –II.2.2: SMX v.s. CSMX, channel E

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 6 Part I.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 7 2x2 Alamouti vs. 1(M)x2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 8 2x3 Alamouti vs. 1(M)x3 CSMX 1(M) Circulation is easy to implement PER performance of 1(M)xN Circulation is better than 2xN ALA.

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 9 2x4 Alamouti vs. 1(M)x4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 10 Part I.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 11 2x2 Alamouti vs. 1(M)x2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 12 2x3 Alamouti vs. 1(M)x3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 13 2x4 Alamouti vs. 1(M)x4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 14 Part I.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 15 2(M)X2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 16 2(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 17 2(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 18 3(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 19 3(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 20 Part I.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 21 2(M)X2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 22 2(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 23 2(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 24 3(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 25 3(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 26 Part II.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 27 2x2 Alamouti vs. 1(M)x2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 28 2x3 Alamouti vs. 1(M)x3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 29 2x4 Alamouti vs. 1(M)x4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 30 Part II.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 31 2x2 Alamouti vs. 1(M)x2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 32 2x3 Alamouti vs. 1(M)x3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 33 2x4 Alamouti vs. 1(M)x4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 34 Part II.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 35 2(M)X2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 36 2(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 37 2(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 38 3(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 39 3(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 40 Part II.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 41 2(M)X2 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 42 2(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 43 2(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 44 3(M)X3 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 45 3(M)X4 CSMX

doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 46 Thank you!! The dream of 11n greedy data rates comes at extreme cost of required SNR (EVM) if challenged in the real MIMO channels. The proposed circulation transmission explores optimal antenna diversities without feedback, relax the required SNR, and make the speedy dream come true.