Modeling and Querying Possible Repairs in Duplicate Detection George Beskales Mohamed A. Soliman Ihab F. Ilyas Shai Ben-David.

Slides:



Advertisements
Similar presentations
Uncertainty in Data Integration Ai Jing
Advertisements

Provenance-Aware Storage Systems Margo Seltzer April 29, 2005.
UNIT-2 Data Preprocessing LectureTopic ********************************************** Lecture-13Why preprocess the data? Lecture-14Data cleaning Lecture-15Data.
1 Copyright by Jiawei Han, modified by Charles Ling for cs411a/538a Data Mining and Data Warehousing v Introduction v Data warehousing and OLAP for data.
Efficient Processing of Top- k Queries in Uncertain Databases Ke Yi, AT&T Labs Feifei Li, Boston University Divesh Srivastava, AT&T Labs George Kollios,
BY ANISH D. SARMA, XIN DONG, ALON HALEVY, PROCEEDINGS OF SIGMOD'08, VANCOUVER, BRITISH COLUMBIA, CANADA, JUNE 2008 Bootstrapping Pay-As-You-Go Data Integration.
Ch2 Data Preprocessing part3 Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
Cleaning Uncertain Data with Quality Guarantees Reynold Cheng, Jinchuan Chen, Xike Xie 2008 VLDB Presented by SHAO Yufeng.
Di Yang, Elke A. Rundensteiner and Matthew O. Ward Worcester Polytechnic Institute VLDB 2009, Lyon, France 1 A Shared Execution Strategy for Multiple Pattern.
Fast Algorithms For Hierarchical Range Histogram Constructions
Outline What is a data warehouse? A multi-dimensional data model Data warehouse architecture Data warehouse implementation Further development of data.
School of Computer Science and Engineering Finding Top k Most Influential Spatial Facilities over Uncertain Objects Liming Zhan Ying Zhang Wenjie Zhang.
Lecture-19 ETL Detail: Data Cleansing
A Generic Framework for Handling Uncertain Data with Local Correlations Xiang Lian and Lei Chen Department of Computer Science and Engineering The Hong.
Sensitivity Analysis & Explanations for Robust Query Evaluation in Probabilistic Databases Bhargav Kanagal, Jian Li & Amol Deshpande.
Quantile-Based KNN over Multi- Valued Objects Wenjie Zhang Xuemin Lin, Muhammad Aamir Cheema, Ying Zhang, Wei Wang The University of New South Wales, Australia.
Interactive Generation of Integrated Schemas Laura Chiticariu et al. Presented by: Meher Talat Shaikh.
LSDS-IR’08, October 30, Peer-to-Peer Similarity Search over Widely Distributed Document Collections Christos Doulkeridis 1, Kjetil Nørvåg 2, Michalis.
What is Cluster Analysis?
Quality-driven Integration of Heterogeneous Information System by Felix Naumann, et al. (VLDB1999) 17 Feb 2006 Presented by Heasoo Hwang.
CIS607, Fall 2005 Semantic Information Integration Article Name: Clio Grows Up: From Research Prototype to Industrial Tool Name: DH(Dong Hwi) kwak Date:
Major Tasks in Data Preprocessing(Ref Chap 3) By Prof. Muhammad Amir Alam.
M ANAGING U NCERTAINTY OF XML S CHEMA M ATCHING Reynold Cheng, Jian Gong, David W. Cheung ICDE’2010.
Da Yan and Wilfred Ng The Hong Kong University of Science and Technology.
Entity Resolution for Big Data Lise Getoor University of Maryland College Park, MD Ashwin Machanavajjhala Duke University Durham, NC
Progressive Approach to Relational Entity Resolution Yasser Altowim, Dmitri Kalashnikov, Sharad Mehrotra Progressive Approach to Relational Entity Resolution.
1 Converting Categories to Numbers for Approximate Nearest Neighbor Search 嘉義大學資工系 郭煌政 2004/10/20.
Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach Wenjie Zhang, Xuemin Lin The University of New South Wales & NICTA Ming Hua,
Querying Structured Text in an XML Database By Xuemei Luo.
RELATIONAL FAULT TOLERANT INTERFACE TO HETEROGENEOUS DISTRIBUTED DATABASES Prof. Osama Abulnaja Afraa Khalifah
A Survey Based Seminar: Data Cleaning & Uncertain Data Management Speaker: Shawn Yang Supervisor: Dr. Reynold Cheng Prof. David Cheung
Top-k Similarity Join over Multi- valued Objects Wenjie Zhang Jing Xu, Xin Liang, Ying Zhang, Xuemin Lin The University of New South Wales, Australia.
OLAP : Blitzkreig Introduction 3 characteristics of OLAP cubes: Large data sets ~ Gb, Tb Expected Query : Aggregation Infrequent updates Star Schema :
Clustering XML Documents for Query Performance Enhancement Wang Lian.
Ground Truth Free Evaluation of Segment Based Maps Rolf Lakaemper Temple University, Philadelphia,PA,USA.
Data Mining over Hidden Data Sources Tantan Liu Depart. Computer Science & Engineering Ohio State University July 23, 2012.
Efficient Processing of Top-k Spatial Preference Queries
Spatio-temporal Pattern Queries M. Hadjieleftheriou G. Kollios P. Bakalov V. J. Tsotras.
Clustering Gene Expression Data BMI/CS 576 Colin Dewey Fall 2010.
BIRCH: An Efficient Data Clustering Method for Very Large Databases Tian Zhang, Raghu Ramakrishnan, Miron Livny University of Wisconsin-Maciison Presented.
Data Preprocessing Compiled By: Umair Yaqub Lecturer Govt. Murray College Sialkot.

Indexing Correlated Probabilistic Databases Bhargav Kanagal, Amol Deshpande University of Maryland, College Park, USA SIGMOD Presented.
Efficient Discovery of XML Data Redundancies Cong Yu and H. V. Jagadish University of Michigan, Ann Arbor - VLDB 2006, Seoul, Korea September 12 th, 2006.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien-Shing Chen Author: Gustavo.
Presented by: Dardan Xhymshiti Fall  Type: Research paper  Authors:  International conference on Very Large Data Bases. Yoonjar Park Seoul National.
Using category-Based Adherence to Cluster Market-Basket Data Author : Ching-Huang Yun, Kun-Ta Chuang, Ming-Syan Chen Graduate : Chien-Ming Hsiao.
Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,
Hierarchical clustering approaches for high-throughput data Colin Dewey BMI/CS 576 Fall 2015.
Privacy Preserving Outlier Detection using Locality Sensitive Hashing
Data Mining: Data Prepossessing What is to be done before we get to Data Mining?
Antara Ghosh Jignashu Parikh
Parametric calibration of speed–density relationships in mesoscopic traffic simulator with data mining Adviser: Yu-Chiang Li Speaker: Gung-Shian Lin Date:2009/10/20.
Noisy Data Noise: random error or variance in a measured variable.
Probabilistic Data Management
Probabilistic Data Management
Parametric calibration of speed–density relationships in mesoscopic traffic simulator with data mining Adviser: Yu-Chiang Li Speaker: Gung-Shian Lin Date:2009/10/20.
Spatio-temporal Pattern Queries
Probabilistic Data Management
Hierarchical clustering approaches for high-throughput data
Lecture 16: Probabilistic Databases
Record Linkage with Uniqueness Constraints and Erroneous Values
Probabilistic Data Management
The BIRCH Algorithm Davitkov Miroslav, 2011/3116
المشرف د.يــــاســـــــــر فـــــــؤاد By: ahmed badrealldeen
Probabilistic Databases
By Sandeep Patil, Department of Computer Engineering, I²IT
Efficient Processing of Top-k Spatial Preference Queries
BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies
Tel Hope Foundation’s International Institute of Information Technology, (I²IT). Tel
Presentation transcript:

Modeling and Querying Possible Repairs in Duplicate Detection George Beskales Mohamed A. Soliman Ihab F. Ilyas Shai Ben-David

Data Cleaning  Real-world data is dirty  Examples: Syntactical Errors: e.g., Micrsoft Heterogeneous Formats: e.g., Phone number formats Missing Values (Incomplete data) Violation of Integrity Constraints: e.g., FDs/INDs Duplicate Records  Data Cleaning is the process of improving data quality by removing errors, inconsistencies and anomalies of data VLDB 2009George Beskales2

Duplicate Elimination Process IDnameZIPIncome P1Green k P2Green k P3Peter k P4Peter k P5Gree k P6Chuck k VLDB 2009George Beskales3 IDnameZIPIncome C1Green k C2Peter k C3Chuck k Compute Pairwise Similarity P1P2 P3 P4 P5 P Cluster Records P1P2 P3P4 P5 P6Merge Clusters C1 C3 C2 Unclean Relation Clean Relation

Probabilistic Data Cleaning VLDB 2009George Beskales4 (a) One-Shot Cleaning Unclean Database Deterministic Database Deterministic Duplicate Elimination RDBMS QueriesResults Single Clean Instance Queries (b) Probabilistic Cleaning Unclean Database Uncertain Database Probabilistic Duplicate Elimination Uncertainty and Cleaning-aware RDBMS Probabilistic Results Single Clean Instance Single Clean Instance Multiple Possible Clean Instances

Motivation Probabilistic Data Cleaning: 1.Avoid deterministic resolution of conflicts during data cleaning 2.Enrich query results by considering all possible cleaning instances 3.Allows specifying query-time cleaning requirements VLDB 2009George Beskales5

VLDB 2009George Beskales6 Probabilistic Duplicate Elimination Probabilistic Duplicate Elimination Single Clean Instance Single Clean Instance Multiple Possible Clean Instances Uncertain Database Uncertain Database Single Clean Instance Single Clean Instance Multiple Possible Clean Instances Queries Unclean Database Uncertainty and Cleaning-aware RDBMS Probabilistic Results Queries Uncertainty and Cleaning-aware RDBMS Probabilistic Results Outline  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation

Uncertainty in Duplicate Detection VLDB 2009George Beskales7 Person Uncertain Clustering X1X1 {P1} {P2} {P3,P4} {P5} {P6} X2X2 {P1,P2} {P3,P4} {P5} {P6} X3X3 {P1,P2,P5} {P3,P4} {P6} Possible Repairs  Uncertain Duplicates: Determining what records should be clustered is uncertain due to noisy similarity measurements  A possible repair of a relation is a clustering (partitioning) of the unclean relation IDNameZIPIncome P1Green k P2Green k P3Peter k P4Peter k P5Gree k P6Chuck k

Challenges 1.The space of all possible clusterings (repairs) is exponentially large 2.How to efficiently generate, store and query the possible repairs? VLDB 2009George Beskales8

The Space of Possible Repairs VLDB 2009George Beskales9 All possible repairs 1 Possible repairs given by any fixed parameterized clustering algorithm 2 Possible repairs given by any fixed hierarchical clustering algorithm Link-based algorithms Hierarchical cut clustering algorithm … 3

Hierarchical Clustering Algorithms  Records are clustered in a form of a hierarchy: all singletons are at leaves, and one cluster is at root  Example: Linkage-based Clustering Algorithm VLDB 2009George Beskales10 r1r1 r2r2 r4r4 r5r5 r3r3 Pair-wise Distance Distance Threshold (  ) {r 1,r 2 },{r 3,r 4,r 5 }

Uncertain Hierarchical Clustering  Hierarchical clustering algorithms can be modified to accept uncertain parameters  The number of generated possible repairs is linear VLDB 2009George Beskales11 r1r1 r2r2 r4r4 r5r5 r3r3 Possible Thresholds [  l,  u ] {r 1 },{r 2 },{r 3 },{r 4 },{r 5 } {r 1 },{r 2 },{r 3 },{r 4,r 5 } {r 1,r 2 },{r 3 },{r 4,r 5 } {r 1,r 2 },{r 3,r 4,r 5 }

Probabilities of Repairs VLDB 2009George Beskales12 {P1,P2} {P3,P4} {P5} {P6} {P1,P2,P5} {P3,P4} {P6} {P1} {P2} {P3,P4} {P5} {P6} Clustering 1Clustering 2Clustering 3 1    3 Pr =    10 Pr =    1 Pr = 0.1 IDNameZIPIncome P1Green k P2Green k P3Peter k P4Peter k P5Gree k P6Chuck k  ~U(0,10)

Representing the Possible Repairs VLDB 2009George Beskales13 ID…IncomeCP CP1…31k{P1,P2}[1,3) CP2…40k{P3,P4}[0,10) CP3…55k{P5}[0,3) CP4…30k{P6}[0,10) CP5…39k{P1,P2,P5}[3,10) CP6…30k{P1}[0,1) CP7…32k{P2}[0,1) U-clean Relation Person C {P1,P2} {P3,P4} {P5} {P6} {P1,P2,P5} {P3,P4} {P6} {P1} {P2} {P3,P4} {P5} {P6} Clustering 1Clustering 2Clustering 3 1    3 Pr =    10 Pr =    1 Pr = 0.1

VLDB 2009George Beskales14 Probabilistic Duplicate Elimination Single Clean Instance Single Clean Instance Multiple Possible Clean Instances Uncertain Database Queries Unclean Database Uncertainty and Cleaning-aware RDBMS Probabilistic Results Queries Uncertainty and Cleaning-aware RDBMS Probabilistic Results Outline  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation

Queries over U-Clean Relations  We adopt the possible worlds semantics to define queries on U-clean relations VLDB 2009George Beskales15 U-Clean Relation(s) R C Possible Clean Instances X 1,X 2,…,X n Possible Clean Instances Q(X 1 ), Q(X 2 ),…,Q(X n ) U-Clean Relation Q(R C ) Definition Implementation Instances Representation

Example: Selection Query VLDB 2009George Beskales16 SELECT ID, Income FROM Person c WHERE Income>35k IDIncomeCP CP240k{P3,P4}[0,10) CP355k{P5}[0,3) CP539k{P1,P2,P5}[3,10) ID… Income CP CP1…31k{P1,P2}[1,3) CP2…40k{P3,P4}[0,10) CP3…55k{P5}[0,3) CP4…30k{P6}[0,10) CP5…39k{P1,P2,P5}[3,10) CP6…30k{P1}[0,1) CP7…32k{P2}[0,1) Person C

Example: Projection Query VLDB 2009George Beskales17 IncomeCP 30k {P1} v {P6}[0,1) v [3,10) 31k {P1,P2}[1,3) 32k{P2}[0,1) 40k {P3,P4} v {P1,P2,P5} [0,1) v [3,10) 55k {P5}[0,3) SELECT DISTINCT Income FROM Person c ID… Income CP CP1…31k{P1,P2}[1,3) CP2…40k{P3,P4}[0,1) CP3…55k{P5}[0,3) CP4…30k{P6}[3,10) CP5…40k{P1,P2,P5}[3,10) CP6…30k{P1}[0,1) CP7…32k{P2}[0,1) Person C

Example: Join Query VLDB 2009George Beskales18 SELECT Income, Price FROM Person c, Vehicle c WHERE Income/10 >= Price IncomePriceCP 40k4k {P3,P4} ^ {V4}  1 : [0, 10) ^  2 : [3,5)... ID…IncomeCP CP1…31k{P1,P2}  1 :[1,3) CP2…40k{P3,P4}  1 :[0,10) …………… IDPriceCP CV54k{V4}  2 : [3,5) CV66k{V3,V4}  2 : [5,10) ……. Person c Vehicle c

Aggregation Queries VLDB 2009George Beskales19 CP2 CP3 CP4 CP6 CP7 CP1 CP2 CP3 CP4 CP2 CP4 CP5 Pr = 0.1 Pr = 0.2 Pr = 0.7 X1X1 X2X2 X3X3 SELECT Sum(Income) FROM Person c Sum=187k Sum=156k Sum=109k ID… Income CP CP1…31k{P1,P2}[1,3) CP2…40k{P3,P4}[0,10) CP3…55k{P5}[0,3) CP4…30k{P6}[0,10) CP5…39k{P1,P2,P5}[3,10) CP6…30k{P1}[0,1) CP7…32k{P2}[0,1) Person c

Other Meta-Queries 1.Obtaining the most probable clean instance 2.Obtaining the -certain clusters 3.Obtaining a clean instance corresponding to a specific parameters of the clustering algorithms 4.Obtaining the probability of clustering a set of records together VLDB 2009George Beskales20

Outline VLDB 2009George Beskales21  Generating and Storing the Possible Clean Instances  Querying the Clean Instances  Experimental Evaluation

Experimental Evaluation  A prototype as an extension of PostgreSQL  Synthetic data generator provided by Febrl (freely extensible biomedical record linkage)  Two hierarchical algorithms: Single-Linkage (S.L.) Nearest-neighbor based clustering algorithm (N.N.) [Chaudhuri et al., ICDE’05] VLDB 2009George Beskales22

Experimental Evaluation VLDB 2009George Beskales23

Experimental Evaluation VLDB 2009George Beskales24

Experimental Evaluation VLDB 2009George Beskales25

Conclusion  We allow representing and querying multiple possible clean instances  We modified hierarchical clustering algorithms to allow generating multiple repairs  We compactly store the possible repairs by keeping the lineage information of clusters in special attributes  New (probabilistic) query types can be issued against the population of possible repairs VLDB 2009George Beskales26