ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.

Slides:



Advertisements
Similar presentations
Photon absorption Local heating Thermal expansion INFN-LENS T2 Braginsky et al., Phys. Lett. A 264, 1 (1999) Cerdonio et al., Phys. Rev. D 63, (2001)
Advertisements

Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
Task M2 – Advanced Materials and Techniques for Resonant Detectors Motivation : Reduce thermal noise contribution to the acoustic detector noise budget.
T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
T3 considers two aspects of the thermal noise The problem of the interrogation area of the test mass. Small interrogation area means large fluctuations.
First Year Seminar: Strontium Project
Work Package 4: Development of low loss dielectric coatings for advanced detectors Scientific motivation: Mechanical dissipation from dielectric mirror.
The Threat of Parametric Instabilities in Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
An optomechanical transducer for the AURIGA “bar” gw detector cryogenic optics towards the quantum limit: high finesse cavities, fibers, piezo actuators,
Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY DCC#
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Status of LCGT and CLIO Masatake Ohashi (ICRR, The University of TOKYO) and LCGT, CLIO collaborators TAUP2007 Sendai, Japan 2007/9/12.
ILIAS WG1 meeting, 19/06/07 IB Faraday Isolator 1 IB in vacuum Faraday isolator E. Genin, S. Hebri, S. Hamdani, P. La Penna, J. Marque EGO.
Optical readout for a resonant gw bar. Old setup.
CNRS LKB – Task T1 Current status of the experiment on optomechanical coupling Sensitivity: 5.10  20 m.Hz  1/2   New high-finesse, high-power cavity.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
T1 task- update Mike Plissi. 2 Motivation  Thermo-elastic noise is higher than the ‘intrinsic’ noise in crystalline materials  There are several sources.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
R&D activities in Florence Geppo Cagnoli INFN and U. of Glasgow WG2 & WG3 Meeting – 27 th Apr Firenze.
A new facility for thermal conductivity measurements Filippo Martelli Univ. of Urbino and INFN Florence GWADW 2006 – 27/5-02/ – La Biodola.
JRA3 STREGA - Introduction Geppo Cagnoli IGR – University of Glasgow ILIAS-GW Meeting, Orsay, 5 th -6 th Nov 2004.
Photo-thermal Deflection Spectroscopy George Noid LIGO SURF Student.
Parametric Instabilities and Control Li Ju ( 鞠莉), Chunnnong Zhao, David Blair Jiayi Qin, Qi Fang, Carl Blair, Jian Liu University of Western Australia.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino 1, Maurizio De Rosa 2, Francesco.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Chunnong Zhao for ACIGA
Experimental investigation of dynamic Photothermal Effect
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Nonlinear generation of radiation by periodically poled LiTaO 3 crystals Single pass UV generation Intracavity Second Harmonic Generation HWP: half wave.
Sapphire for the LCGT project Eiichi Hirose ICRR, University of Tokyo Kyohei Watanabe, Norikatsu Mio PSC, University of Tokyo GT Advanced Technology, Sep.
Experimental Test of Radiative Cooling Roberto Passaquieti Università di Pisa and INFN-Pisa V. Fafone, Y. Minenkov, I. Modena, A. Rocchi Università di.
ACIGA High Optical Power Test Facility
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Task T2 – Measurement of photo-elastic noise Goals: - observation of photo-elastic effects - dependence with temperature down to a few K - dependence with.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Some considerations on radiative cooling V. Fafone, Y. Minenkov, I. Modena, A. Rocchi INFN Roma Tor Vergata.
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto (*) INFN- Pisa (*) Work done in collaboration with G. Cella.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G Z LIGO’s Thermal Noise Interferometer Progress and Status Eric D. Black, Kenneth G. Libbrecht, and Shanti Rao (Caltech) Seiji Kawamura.
The VIRGO detection system
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Active Vibration Isolation using a Suspension Point Interferometer Youichi Aso Dept. Physics, University of Tokyo ASPEN Winter Conference on Gravitational.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
Lessons from CLIO Masatake Ohashi (ICRR, The University of TOKYO) and CLIO collaborators GWADW2012 Hawaii 2012/5/16.
bKAGRA PSL Design Study
Interferometer configurations for Gravitational Wave Detectors
Peter Beyersdorf TAMA300 Results from the Stanford 10m all-reflective polarization Sagnac interferometer Peter Beyersdorf TAMA300.
Michele Punturo WP3 meeting, Cascina 9-July-2004
The Proposed Holographic Noise Experiment
Optimization of thermal noise for ET-LF sensitivity
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Thermal noise calculations for cryogenic optics
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
LIGO Scientific Collaboration
New Results on Photothermal Effect: Size and Coating Effect
Thermal Noise Interferometer Update and Status
T3 DEVELOPMENT OF SELECTIVE READOUT SCHEMES
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Presentation transcript:

ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also LENS Florence, INOA Florence and Naple) CNRS (LKB Paris) IGR (expressed interest in the task)

ILIAS 5-6/11/2004 WG T2 Photo-thermal effect Physical origin: heating of mirrors by absorbed laser light  by thermal expansion: deformation/displacement due to shot noise in the absorbed radiation: displacement noise Depends on: laser power impinging on the mirrors absorption coefficient material: - thermal expansion - thermal conductivity and capacitance temperature (through the above parameters) mirror size and shape/suspension beam waist detection frequency

ILIAS 5-6/11/2004 WG T2 Photo-thermal effect Frequency dependence (theory): Half-space approximation: - linear decay above  c = 2k/c s w 2 where k: thermal conductivity c s : volumetric thermal capacitance w: beam waist - logarithmic below  c c (Hz) Fused silicaSapphire w/2 300K1K300K1K 10mm mm ·10 8 Cut-off depending on the mirror shape and suspension (heat dispersion)

Mirror  half space approximation Braginsky et al., Phys. Lett. A 264, 1 (1999) Cerdonio et al., Phys. Rev. D 63, (2001)  L = L 0 K(  /  c )  1/  ILIAS 5-6/11/2004 WG T2

M. De Rosa et al.: “Experimental measurement of photothermal effect in Fabry-Perot cavities ”, Phys. Rev. Lett. 89, (2002) Fitting curve: L 0 /P abs = 1.5·10 -4  m/mW

ILIAS 5-6/11/2004 WG T2 Cryogenic operation, high Finesse cavity c : 2.8 Hz 10 kHz (fused silica) 50 MHz (sapphire) L 0 /P abs : 1.5·10 -4 m/mW 0.5·10 -5 m/mW F :  Cryogenic operation, high Finesse cavity c : 2.8 Hz 10 kHz (fused silica) 50 MHz (sapphire) L 0 /P abs : 1.5·10 -4 m/mW 0.5·10 -5 m/mW F : 

ILIAS 5-6/11/2004 WG T2 Work Plan a) Years 1-2: Room temperature meas. of photo-th. noise; waist dependence b) Years 2-3: Different substrates and coatings. c) Years 1-3: Test and setup of high Finesse cavities at low T d) Years 2-4: Measurements at low T

ILIAS 5-6/11/2004 WG T2 a) Years 1-2: Room temperature meas. of photo-th. noise; waist dependence Work performed: Optimized the measurement apparatus: - AOM for wider and faster tuning on both cavities - EOM for amplitude modulation on one single cavity Designed and built specific mounts for using short ( small waist) cavities on the present acoustically-isolated, thermally stabilized environment Next step: Check of the previous measurements, with better accuracy (fall of half-space approximation??) Independent measurement of absorption??

ILIAS 5-6/11/2004 WG T2 b) Years 2-3: Different substrates and coatings Depends on the availability of different mirrors (at present: fused-silica substrates and coatings by REO

Setup and test of high-finesse cavities Mirrors made by J.M. Mackowski Input mirror T = 20 ppm, total losses < 10 ppm Compact cavity: L = 0.2 mm Þ Cavity finesse = , input power > 3 mW Tests at cryogenic temperature in progress