Elementary Linear Algebra Anton & Rorres, 9th Edition

Slides:



Advertisements
Similar presentations
BAI CM20144 Applications I: Mathematics for Applications Mark Wood
Advertisements

Chapter 3 Determinants 3.1 The Determinant of a Matrix
Applied Informatics Štefan BEREŽNÝ
Chapter 3 Determinants and Eigenvectors 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
5.4. Additional properties Cofactor, Adjoint matrix, Invertible matrix, Cramers rule. (Cayley, Sylvester….)
Chap. 3 Determinants 3.1 The Determinants of a Matrix
3 - 1 Chapter 2B Determinants 2B.1 The Determinant and Evaluation of a Matrix 2B.2 Properties of Determinants 2B.3 Eigenvalues and Application of Determinants.
Section 3.1 The Determinant of a Matrix. Determinants are computed only on square matrices. Notation: det(A) or |A| For 1 x 1 matrices: det( [k] ) = k.
Chapter 3 Determinants 3.1 The Determinant of a Matrix
Matrices and Systems of Equations
Economics 2301 Matrices Lecture 13.
4.III. Other Formulas 4.III.1. Laplace’s Expansion Definition 1.2:Minor & Cofactor For any n  n matrix T, the (n  1)  (n  1) matrix formed by deleting.
ENGG2013 Unit 9 3x3 Determinant
Matrices and Determinants
Chapter 5 Determinants.
Spring 2013 Solving a System of Linear Equations Matrix inverse Simultaneous equations Cramer’s rule Second-order Conditions Lecture 7.
1 資訊科學數學 14 : Determinants & Inverses 陳光琦助理教授 (Kuang-Chi Chen)
 Row and Reduced Row Echelon  Elementary Matrices.
Matrix Inversion.
Chapter 2 Determinants. The Determinant Function –The 2  2 matrix is invertible if ad-bc  0. The expression ad- bc occurs so frequently that it has.
1 Chapter 6 – Determinant Outline 6.1 Introduction to Determinants 6.2 Properties of the Determinant 6.3 Geometrical Interpretations of the Determinant;
CHAPTER 2 MATRIX. CHAPTER OUTLINE 2.1 Introduction 2.2 Types of Matrices 2.3 Determinants 2.4 The Inverse of a Square Matrix 2.5 Types of Solutions to.
Matrices & Determinants Chapter: 1 Matrices & Determinants.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 9 Matrices and Determinants.
WEEK 8 SYSTEMS OF EQUATIONS DETERMINANTS AND CRAMER’S RULE.
8.1 Matrices & Systems of Equations
1 Ch. 4 Linear Models & Matrix Algebra Matrix algebra can be used: a. To express the system of equations in a compact manner. b. To find out whether solution.
1 MAC 2103 Module 3 Determinants. 2 Rev.F09 Learning Objectives Upon completing this module, you should be able to: 1. Determine the minor, cofactor,
Matrices CHAPTER 8.1 ~ 8.8. Ch _2 Contents  8.1 Matrix Algebra 8.1 Matrix Algebra  8.2 Systems of Linear Algebra Equations 8.2 Systems of Linear.
Chapter 9 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Determinants and Cramer’s Rule.
Mathematics.
CHAPTER 3 DETERMINANTS 3.1 The Determinant of a Matrix 3.2 Determinant and Elementary Operations 3.3 Properties of Determinants 3.4 Application of Determinants.
Elementary Linear Algebra Anton & Rorres, 9 th Edition Lecture Set – 02 Chapter 2: Determinants.
The Determinant of a Matrix Note: The determinant of a matrix can be positive, zero, or negative. Chapter 3 Determinants.
Chapter 3 Determinants Linear Algebra. Ch03_2 3.1 Introduction to Determinants Definition The determinant of a 2  2 matrix A is denoted |A| and is given.
Elementary Linear Algebra Anton & Rorres, 9 th Edition Lecture Set – 07 Chapter 7: Eigenvalues, Eigenvectors.
College Algebra Sixth Edition James Stewart Lothar Redlin Saleem Watson.
Sec 3.6 Determinants 2x2 matrix Evaluate the determinant of.
Chapter 2 Determinants. With each square matrix it is possible to associate a real number called the determinant of the matrix. The value of this number.
Copyright © Cengage Learning. All rights reserved. 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES.
2.5 – Determinants and Multiplicative Inverses of Matrices.
Copyright © Cengage Learning. All rights reserved. 7.7 The Determinant of a Square Matrix.
LEARNING OUTCOMES At the end of this topic, student should be able to :  D efination of matrix  Identify the different types of matrices such as rectangular,
Section 2.1 Determinants by Cofactor Expansion. THE DETERMINANT Recall from algebra, that the function f (x) = x 2 is a function from the real numbers.
Copyright © 1999 by the McGraw-Hill Companies, Inc. Barnett/Ziegler/Byleen College Algebra, 6 th Edition Chapter Seven Matrices & Determinants.
Slide INTRODUCTION TO DETERMINANTS Determinants 3.1.
CHAPTER 7 Determinant s. Outline - Permutation - Definition of the Determinant - Properties of Determinants - Evaluation of Determinants by Elementary.
MATH 1046 Determinants (Section 4.2)
Sec 3.6 Determinants 2x2 matrix Evaluate the determinant of.
MAT 322: LINEAR ALGEBRA.
nhaa/imk/sem /eqt101/rk12/32
CHAPTER 2 MATRICES Determinant Inverse.
3.1 Introduction to Determinants
Linear Algebra Lecture 19.
Barnett/Ziegler/Byleen College Algebra, 7th Edition
Linear Algebra Lecture 36.
Chapter 2 Determinants by Cofactor Expansion
Linear Algebra Lecture 17.
DETERMINANT MATRIX YULVI ZAIKA.
3.2 Properties of Determinants
Chapter 2 Determinants Basil Hamed
3.2 Properties of Determinants
Linear Algebra Lecture 18.
College Algebra Chapter 6 Matrices and Determinants and Applications
Elementary Linear Algebra Anton & Rorres, 9th Edition
Chapter 2 Determinants.
Chapter 2 Determinants.
Chapter 2 Determinants.
Presentation transcript:

Elementary Linear Algebra Anton & Rorres, 9th Edition Lecture Set – 02 Chapter 2: Determinants

Chapter Content Determinants by Cofactor Expansion Evaluating Determinants by Row Reduction Properties of the Determinant Function A Combinatorial Approach to Determinants

2-1 Minor and Cofactor Definition Remark Let A be mn The (i,j)-minor of A, denoted Mij is the determinant of the (n-1) (n-1) matrix formed by deleting the ith row and jth column from A The (i,j)-cofactor of A, denoted Cij, is (-1)i+j Mij Remark Note that Cij = Mij and the signs (-1)i+j in the definition of cofactor form a checkerboard pattern:

2-1 Example 1 Let The minor of entry a11 is The cofactor of a11 is C11 = (-1)1+1M11 = M11 = 16 Similarly, the minor of entry a32 is The cofactor of a32 is C32 = (-1)3+2M32 = -M32 = -26

2-1 Cofactor Expansion The definition of a 3×3 determinant in terms of minors and cofactors det(A) = a11M11 +a12(-M12)+a13M13 = a11C11 +a12C12+a13C13 this method is called cofactor expansion along the first row of A Example 2

2-1 Cofactor Expansion det(A) =a11C11 +a12C12+a13C13 = a11C11 +a21C21+a31C31 =a21C21 +a22C22+a23C23 = a12C12 +a22C22+a32C32 =a31C31 +a32C32+a33C33 = a13C13 +a23C23+a33C33 Theorem 2.1.1 (Expansions by Cofactors) The determinant of an nn matrix A can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products; that is, for each 1  i, j  n det(A) = a1jC1j + a2jC2j +… + anjCnj (cofactor expansion along the jth column) and det(A) = ai1Ci1 + ai2Ci2 +… + ainCin (cofactor expansion along the ith row)

2-1 Example 3 & 4 Example 3 Example 4 cofactor expansion along the first column of A Example 4 smart choice of row or column det(A) = ?

2-1 Adjoint of a Matrix If A is any nn matrix and Cij is the cofactor of aij, then the matrix is called the matrix of cofactors from A. The transpose of this matrix is called the adjoint of A and is denoted by adj(A) Remarks If one multiplies the entries in any row by the corresponding cofactors from a different row, the sum of these products is always zero.

2-1 Example 5 Let a11C31 + a12C32 + a13C33 = ?

2-1 Example 6 & 7 Let The cofactors of A are: C11 = 12, C12 = 6, C13 = -16, C21 = 4, C22 = 2, C23 = 16, C31 = 12, C32 = -10, C33 = 16 The matrix of cofactor and adjoint of A are The inverse (see below) is

Theorem 2.1.2 (Inverse of a Matrix using its Adjoint) If A is an invertible matrix, then Show first that

Theorem 2.1.3 If A is an n × n triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix; det(A) = a11a22…ann E.g.

2-1 Prove Theorem 1.7.1c A triangular matrix is invertible if and only if its diagonal entries are all nonzero

2-1 Prove Theorem 1.7.1d The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular

Theorem 2.1.4 (Cramer’s Rule) If Ax = b is a system of n linear equations in n unknowns such that det(I – A)  0 , then the system has a unique solution. This solution is where Aj is the matrix obtained by replacing the entries in the column of A by the entries in the matrix b = [b1 b2 ··· bn]T

2-1 Example 9 Use Cramer’s rule to solve Since Thus,

Exercise Set 2.1 Question 13

Exercise Set 2.1 Question 23

Exercise Set 2.1 Question 2 7