Garfield AP Computer Science

Slides:



Advertisements
Similar presentations
ISOM MIS 215 Module 7 – Sorting. ISOM Where are we? 2 Intro to Java, Course Java lang. basics Arrays Introduction NewbieProgrammersDevelopersProfessionalsDesigners.
Advertisements

CSE 373: Data Structures and Algorithms
CSE 373: Data Structures and Algorithms
Chapter 11 Sorting and Searching. Copyright © 2005 Pearson Addison-Wesley. All rights reserved Chapter Objectives Examine the linear search and.
CHAPTER 11 Sorting.
Objectives Learn how to implement the sequential search algorithm Explore how to sort an array using the selection sort algorithm Learn how to implement.
CS 104 Introduction to Computer Science and Graphics Problems Data Structure & Algorithms (3) Recurrence Relation 11/11 ~ 11/14/2008 Yang Song.
Week 11 Introduction to Computer Science and Object-Oriented Programming COMP 111 George Basham.
CHAPTER 09 Compiled by: Dr. Mohammad Omar Alhawarat Sorting & Searching.
Computer Science Searching & Sorting.
CSE 373 Data Structures and Algorithms
CSE 373: Data Structures and Algorithms Lecture 6: Sorting 1.
Heapsort. Heapsort is a comparison-based sorting algorithm, and is part of the selection sort family. Although somewhat slower in practice on most machines.
Simple Iterative Sorting Sorting as a means to study data structures and algorithms Historical notes Swapping records Swapping pointers to records Description,
Sorting. Pseudocode of Insertion Sort Insertion Sort To sort array A[0..n-1], sort A[0..n-2] recursively and then insert A[n-1] in its proper place among.
Survey of Sorting Ananda Gunawardena. Naïve sorting algorithms Bubble sort: scan for flips, until all are fixed Etc...
Chapter 5 Searching and Sorting. Copyright © 2004 Pearson Addison-Wesley. All rights reserved.1-2 Chapter Objectives Examine the linear search and binary.
1 CSE 373 Sorting 3: Merge Sort, Quick Sort reading: Weiss Ch. 7 slides created by Marty Stepp
Searching and Sorting Recursion, Merge-sort, Divide & Conquer, Bucket sort, Radix sort Lecture 5.
Chapter 8 Sorting and Searching Goals: 1.Java implementation of sorting algorithms 2.Selection and Insertion Sorts 3.Recursive Sorts: Mergesort and Quicksort.
Sorting and Searching by Dr P.Padmanabham Professor (CSE)&Director
1 Searching and Sorting Searching algorithms with simple arrays Sorting algorithms with simple arrays –Selection Sort –Insertion Sort –Bubble Sort –Quick.
Searching and Sorting Searching: Sequential, Binary Sorting: Selection, Insertion, Shell.
Course Code #IDCGRF001-A 5.1: Searching and sorting concepts Programming Techniques.
ICS201 Lecture 21 : Sorting King Fahd University of Petroleum & Minerals College of Computer Science & Engineering Information & Computer Science Department.
CSE 143 Lecture 16 Sorting reading: 13.1, slides created by Marty Stepp
PREVIOUS SORTING ALGORITHMS  BUBBLE SORT –Time Complexity: O(n 2 ) For each item, make (n –1) comparisons Gives: Comparisons = (n –1) + (n – 2)
Review Quick Sort Quick Sort Algorithm Time Complexity Examples
Building Java Programs Chapter 13 Searching and Sorting Copyright (c) Pearson All rights reserved.
Building Java Programs Chapter 13 Sorting reading: 13.3, 13.4.
Sorting and Runtime Complexity CS255. Sorting Different ways to sort: –Bubble –Exchange –Insertion –Merge –Quick –more…
Searching and Sorting Searching algorithms with simple arrays
Lecture 25: Searching and Sorting
CSc 110, Autumn 2017 Lecture 37: searching and sorting
Divide and Conquer.
slides created by Marty Stepp and Hélène Martin
Adapted from slides by Marty Stepp and Stuart Reges
Adapted from slides by Marty Stepp and Stuart Reges
Adapted from slides by Marty Stepp and Stuart Reges
Adapted from slides by Marty Stepp and Stuart Reges
Based on slides created by Ethan Apter & Marty Stepp
CSc 110, Spring 2017 Lecture 39: searching.
Building Java Programs
slides adapted from Marty Stepp and Hélène Martin
Building Java Programs
Merge sort merge sort: Repeatedly divides the data in half, sorts each half, and combines the sorted halves into a sorted whole. The algorithm: Divide.
CSc 110, Spring 2017 Lecture 39: searching and sorting
CSE 154 Sorting reading: 13.3, 13.4
Adapted from slides by Marty Stepp and Stuart Reges
slides created by Marty Stepp
Sub-Quadratic Sorting Algorithms
slides created by Marty Stepp and Ethan Apter
slides created by Marty Stepp
slides created by Marty Stepp
CSE 143 Sorting reading: 13.3, 13.4.
CSE 332: Data Abstractions Sorting I
Lecture 15: Algorithms AP Computer Science Principles
Building Java Programs Chapter 13
CSE 373 Data Structures and Algorithms
slides created by Marty Stepp and Hélène Martin
Building Java Programs
Building Java Programs
slides adapted from Marty Stepp
CSE 373 Sorting 1: Bogo Sort, Stooge Sort, Bubble Sort
Lecture 21: Searching and Sorting
Merge sort merge sort: Repeatedly divides the data in half, sorts each half, and combines the sorted halves into a sorted whole. The algorithm: Divide.
Searching/Sorting/Searching
CSE 373 Sorting 2: Selection, Insertion, Shell Sort
Stacks, Queues, ListNodes
Presentation transcript:

Garfield AP Computer Science Sorting Garfield AP Computer Science

Remember Searching is really important Linear or sequential search’s run time is directly proportional to the size of its input. Binary search is a divide-and-conquer algorithm Binary search’s run time is proportional to the log of its input size. Binary search is much better for large inputs!

Complexity review: Range algorithm What complexity class is this algorithm? Can it be improved? // returns the range of values in the given array; // the difference between elements furthest apart // example: range({17, 29, 11, 4, 20, 8}) is 25 public static int range(int[] numbers) { int maxDiff = 0; // look at each pair of values for (int i = 0; i < numbers.length; i++) { for (int j = 0; j < numbers.length; j++) { int diff = Math.abs(numbers[j] – numbers[i]); if (diff > maxDiff) { maxDiff = diff; } return diff;

Order N range algorithm The first version was O(N2). This final version is O(N). It runs MUCH faster: // returns the range of values in the given array; // example: range({17, 29, 11, 4, 20, 8}) is 25 public static int range(int[] numbers) { int max = numbers[0]; // find max/min values int min = max; for (int i = 1; i < numbers.length; i++) { if (numbers[i] < min) { min = numbers[i]; } if (numbers[i] > max) { max = numbers[i]; return max - min;

Runtime of first 2 versions

Sorting sorting: Rearranging the values in an array or collection into a specific order (usually into their "natural ordering"). one of the fundamental problems in computer science can be solved in many ways: there are many sorting algorithms some are faster/slower than others some use more/less memory than others some work better with specific kinds of data some can utilize multiple computers / processors, ... comparison-based sorting : determining order by comparing pairs of elements: <, >, compareTo, … See visualizations at http://math.hws.edu/TMCM/java/xSortLab/ and http://www.sorting-algorithms.com/few-unique-keys

Sorting algorithms bogo sort: shuffle and pray bubble sort: swap adjacent pairs that are out of order selection sort: look for the smallest element, move to front insertion sort: build an increasingly large sorted front portion merge sort: recursively divide the array in half and sort it heap sort: place the values into a sorted tree structure quick sort: recursively partition array based on a middle value other specialized sorting algorithms: bucket sort: cluster elements into smaller groups, sort them radix sort: sort integers by last digit, then 2nd to last, then ... ...

Selection sort selection sort: Orders a list of values by repeatedly putting the smallest or largest unplaced value into its final position. The algorithm: Look through the list to find the smallest value. Swap it so that it is at index 0. Look through the list to find the second-smallest value. Swap it so that it is at index 1. ... Repeat until all values are in their proper places.

Selection sort example Initial array: After 1st, 2nd, and 3rd passes: index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 value 22 18 -4 27 30 36 50 68 91 56 85 42 98 25 index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 value -4 18 22 27 30 36 50 68 91 56 85 42 98 25 index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 value -4 22 27 30 36 50 68 91 56 18 85 42 98 25 index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 value -4 22 27 30 36 50 68 91 56 18 85 42 98 25

Selection sort code // Rearranges the elements of a into sorted order using // the selection sort algorithm. public static void selectionSort(int[] a) { for (int i = 0; i < a.length - 1; i++) { // find index of smallest remaining value int min = i; for (int j = i + 1; j < a.length; j++) { if (a[j] < a[min]) { min = j; } // swap smallest value its proper place, a[i] swap(a, i, min);

Selection sort runtime (Fig. 13.6) What is the complexity class (Big-Oh) of selection sort?

Selection Sort Analysis Best case Takes n2 comparisons Worst case Average case is of course n2 – not so good!

Insertion sort insertion sort: Shift each element into a sorted sub-array faster than selection sort (examines fewer values) index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 value -4 18 22 27 30 36 50 68 91 56 85 42 98 25 sorted sub-array (indexes 0-7) 7

Insertion Sort Analysis Best case Array is already sorted; takes n comparisons Worst case Array is backwards; takes n2 comparisons This is an n2 algorithm

Merge sort merge sort: Repeatedly divides the data in half, sorts each half, and combines the sorted halves into a sorted whole. The algorithm: Divide the list into two roughly equal halves. Sort the left half. Sort the right half. Merge the two sorted halves into one sorted list. Often implemented recursively. An example of a "divide and conquer" algorithm. Invented by John von Neumann in 1945

Merge sort example index 1 2 3 4 5 6 7 value 22 18 12 -4 58 31 42 22 1 2 3 4 5 6 7 value 22 18 12 -4 58 31 42 split 22 18 12 -4 58 7 31 42 split split 22 18 12 -4 58 7 31 42 split split split split 22 18 12 -4 58 7 31 42 merge merge merge merge 18 22 -4 12 7 58 31 42 merge merge -4 12 18 22 7 31 42 58 merge -4 7 12 18 22 31 42 58

Merging sorted halves

Merge halves code // Merges the left/right elements into a sorted result. // Precondition: left/right are sorted public static void merge(int[] result, int[] left, int[] right) { int i1 = 0; // index into left array int i2 = 0; // index into right array for (int i = 0; i < result.length; i++) { if (i2 >= right.length || (i1 < left.length && left[i1] <= right[i2])) { result[i] = left[i1]; // take from left i1++; } else { result[i] = right[i2]; // take from right i2++; }

Merge sort code // Rearranges the elements of a into sorted order using // the merge sort algorithm. public static void mergeSort(int[] a) { // split array into two halves int[] left = Arrays.copyOfRange(a, 0, a.length/2); int[] right = Arrays.copyOfRange(a, a.length/2, a.length); // sort the two halves ... // merge the sorted halves into a sorted whole merge(a, left, right); }

Merge sort code 2 // Rearranges the elements of a into sorted order using // the merge sort algorithm (recursive). public static void mergeSort(int[] a) { if (a.length >= 2) { // split array into two halves int[] left = Arrays.copyOfRange(a, 0, a.length/2); int[] right = Arrays.copyOfRange(a, a.length/2, a.length); // sort the two halves mergeSort(left); mergeSort(right); // merge the sorted halves into a sorted whole merge(a, left, right); }

Merge sort runtime What is the complexity class (Big-Oh) of merge sort?

Merge sort is n(logn)