UNIT 4 Equilibria. Things to Review for Unit 4 1.Solving quadratic equations: ax 2 + bx + c = 0 x = -b ± √ b 2 – 4ac 2a 2.Common logarithms log (base.

Slides:



Advertisements
Similar presentations
Chapter 12 Gaseous Chemical Equilibrium
Advertisements

Equilibrium Unit 10 1.
Introduction to Chemical Equilibrium Chapter 15 CHEM 160.
CHAPTER 14 CHEMICAL EQUILIBRIUM
Equilibrium Chapter 15. At room temperature colorless N 2 O 4 decomposes to brown NO 2. N 2 O 4 (g)  2NO 2 (g) (colorless) (brown)
Chapter 12 Gaseous Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the.
Chemical Equilibrium Chapter Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium.
Chemical Equilibrium Chapter 6 pages Reversible Reactions- most chemical reactions are reversible under the correct conditions.
Ch. 14: Chemical Equilibrium I.Introduction II.The Equilibrium Constant (K) III.Values of Equilibrium Constants IV.The Reaction Quotient (Q) V.Equilibrium.
Equilibrium UNIT 12. Overview  Concept of Equilibrium  Equilibrium constant  Equilibrium expression  Heterogeneous vs homogeneous equilibrium  Solving.
Chemical Equilibrium Chapter 15. The Concept of Chemical Equilibrium Chemical equilibrium occurs when opposing reactions are proceeding at equal rates.
1 Chemical Equilibria Chapter Chemical reactions Can reverse (most of the time) Can reverse (most of the time) Though might require a good deal.
Equilibrium PhaseSolutionChemical. Reversible Reactions a number of chemical reactions have a ΔH and ΔS that are both positive or both negative; one force.
Ch. 14: Chemical Equilibrium Dr. Namphol Sinkaset Chem 201: General Chemistry II.
Equilibrium L. Scheffler Lincoln High School
16-2: The Law of Chemical Equilibrium. Remember… Chemical equilibrium is achieved when the rate of the forward rxn is equal to the rate of the reverse.
Chapter 16. Chemical Reactions Rates and Equilibria The rate of a chemical reaction shows how fast it goes. The equilibrium position of a chemical reaction.
Chemical Equilibrium The study of reactions that occur in both directions.
Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
C h a p t e r 13 Chemical Equilibrium. The Equilibrium State Chemical Equilibrium: The state reached when the concentrations of reactants and products.
Chemistry 1011 TOPIC TEXT REFERENCE Gaseous Chemical Equilibrium
Equilibrium.  Equilibrium is NOT when all things are equal.  Equilibrium is signaled by no net change in the concentrations of reactants or products.
Chemical Equilibrium: Basic Concepts
Chapter 15 Chemical Equilibrium
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chemical Equilibrium Chapter 15. aA + bB cC + dD K C = [C] c [D] d [A] a [B] b Law of Mass Action Must be caps! Equilibrium constant Lies to the rightLies.
Chemical Equilibrium Introduction to Chemical Equilibrium Equilibrium Constants and Expressions Calculations Involving Equilibrium Constants Using.
CHEMICAL EQUILIBRIUM notes.
Equilibrium SCH4U organic photochromic molecules respond to the UV light.
EQUILIBRIUM BASICS Chapter Lesson Objectives Know -Factors that affect/don’t affect a reaction reaching equilibrium -K is equilibrium constant.
1 Chemical Equilibrium You learned when we studied mechanisms that some rxns are reversible or equilibrium rxns The double arrow is used to show this.
Chapter 9: Chemical Equilibrium The forward and reverse reaction are both taking place at the same rate.
Prepared by PhD Halina Falfushynska 1 Lecture 7. Electrolytes. Reactions in Aqueous Solutions.
Chemical Equilibrium. Reaction Types So far this year we have been writing chemical formulas as completion reaction. So far this year we have been writing.
Chemical Equilibrium K p (gases) and heterogeneous equilibria Chapter 13: Sections 3 & 4 AP.
Chapter 14 & 16 Chemical Equilibrium and reaction rates.
N 2 (g) + 3 H 2 (g) --> 2 NH 3 (g) Chemical Equilibrium.
Chemical Equilibrium Chemistry.2 Midland High School Mrs. Daniels April 2007 Chemistry.2 Midland High School Mrs. Daniels April 2007.
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Chemical Equilibrium Physical Equilibrium AND. Describe physical and chemical equilibrium Describe the conditions needed for equilibrium. Write the equilibrium.
‹#› Chapter 18 Chemical Equilibrium. solubility/chemical-stalagmite.html In this experiment sodium acetate.
1 Chemical Equilibrium: “ Big K” kinetics: rate constant “little k” kinetics “little k” told us how fast a reaction proceeds and is used to indicate a.
Equilibrium: A State of Dynamic Balance Chapter 18.1.
CH 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
8–1 John A. Schreifels Chemistry 212 Chapter 15-1 Chapter 15 Chemical Equilibrium.
By Steven S. Zumdahl & Don J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry,
Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 16 Chemical Equilibrium.
Chemical Equilibrium………..  Until now, we’ve treated reactions as though they can only go in one direction….with all of the reactants turning into products…
Chemical Equilibrium. n In systems that are in equilibrium, reverse processes are happening at the same time and at the same rate. n Rate forward = Rate.
Chapter 18 Chemical Equilibrium =yes&pid=806# =yes&pid=806#
Chapter 15 Equilibrium. Equilibrium N H 2  2 NH 3 N H 2  2 NH 3 Both reactions occur, Both reactions occur, Closed system Closed system.
1 Chemical Equilibrium Chapter 14 Henri L. le Chatlier Adapted thermodynamics to equilibria; formulated the principle known by his name.
The Concept of Dynamic Equilibrium – The Equilibrium Constant (K)
CHE1102, Chapter 14 Learn, 1 Chapter 15 Chemical Equilibrium.
Chapter 15: Chemical Equilibrium By: Ms. Buroker.
Applications of the Equil. Constant Predicting the direction of approach to equilibrium: At 448C the equilibrium constant kc for the reaction H 2 (g) +
Equilibrium The student will: 1. compare and contrast forward reactions with reversible reactions 2. express the equilibrium constant equation 3. calculate.
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. © 2012 Pearson Education,
Prentice Hall © 2003Chapter 15 Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 9th Edition David P. White.
Pacific school of Engineering Sub: C.E.T-2 Topic: Chemical reaction Equilibrium Mayani Chintak Sudani Dhrutik Bhikadiya Hardik.
CHAPTER 17 – CHEMICAL EQUILIBRIUM 8B-1 (of 37) COLLISION THEORY 1 - Molecules must collide to react 2 -Molecules must collide with sufficient energy to.
 Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  When the forward reaction equals the reverse reaction.  It results.
CHEMICAL EQUILIBRIUM. OVERVIEW Describing Chemical Equilibrium – Chemical Equilibrium – A Dynamic Equilibrium (the link to Chemical Kinetics) – The Equilibrium.
Equilibrium Expressions
Chemical Equilibrium.
The Equilibrium Constant
Catalyst What parts of the test do you think went better than usual?
Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K c ; Calculating K c using equilibrium concentrations; Calculating equilibrium.
Presentation transcript:

UNIT 4 Equilibria

Things to Review for Unit 4 1.Solving quadratic equations: ax 2 + bx + c = 0 x = -b ± √ b 2 – 4ac 2a 2.Common logarithms log (base 10 logarithms) 3.Calculating the molarity of a solution obtained by dilution…M 1 V 1 = M 2 V 2 4.Acid-base neutralization reactions (a type of double replacement reaction) 5.Titration problems (the stoichiometry of acid-base reactions) 6.Equation showing an ionic solid dissolving in water.

Chemical Equilibrium It is well-known among people who want to make money from synthesizing a chemical that reactions do not often go to 100% completion. Why? Because reactions involve collisions between molecules and the subsequent making and breaking of bonds. “Products” are just as susceptible to such collisions as “reactants”.

Chemical Equilibrium As soon as a reaction A  B yields any B at all, the process B  A may occur. Remember that the rate of a reaction can depend on the concentration of reactants? As time goes on and more B is formed, the rate of B  A increases while the rate of A  B decreases until the rates are equal. Equilibrium occurs when opposing reactions proceed at equal rates.

Chemical Equilibrium

If this reaction were first order in both directions and had a forward reaction rate constant of s -1, then the following data could apply at 100°C. Chemical Equilibrium time (s)P A (bar) A(g) B(g)

As the partial pressure of A drops, the partial pressure of B increases until the partial pressures each no longer change with time. Chemical Equilibrium time (s) P A (bar)P B (bar) PAPA PBPB

Notice that the partial pressure of A does not drop all the way to zero. There is A left over when the partial pressure of the product B has leveled. Chemical Equilibrium PBPB PAPA A(g) B(g) Once the reaction reaches equilibrium, it appears to stop, because the partial pressure of product stops increasing. PAPA PBPB

Let’s look at the reaction in terms of rates. Chemical Equilibrium A(g) B(g) rate forward = k f [A] rate forward = k f P A RT rate reverse = k r [B] rate reverse = k r P B RT for an ideal gas P = MRT At equilibrium, the forward and reverse rates are equal: k f P A = k r P B RT RT k f = P B k r P A The k’s are constants, so at equilibrium, the ratio of the partial pressures is fixed.

Chemical Equilibrium A(g) B(g) Rate B  A Rate A  B At equilibrium, the forward and reverse rates are equal: k f P A = k r P B RT RT k f = P B k r P A The term “dynamic equilibrium” may be used instead of simply “equilibrium.” This reminds us that both forward and reverse reactions continue to occur. equilibrium starts here

Chemical Equilibrium At equilibrium, the forward and reverse rates are equal: k f P A = k r P B RT RT k f = P B k r P A The k’s are constants. At equilibrium, the ratio of the partial pressures must also be a constant. The value of this ratio is called the equilibrium constant K P. A(g) B(g) k f = P B = K P k r P A If we were dealing with solutions, at equilibrium the ratio of the concentrations would be a constant K C.

The Equilibrium Constant K P The law of mass action states that, at equilibrium, the following ratio is a constant: K P = P C c P D d P A a P B b The rate at which the reaction proceeds does not matter. At equilibrium, this ratio holds. Note the use of partial pressures for gases. Concentrations (molarity) may be used, but they will lead to K C, which has a different value than K P. aA(g) + bB(g) cC(g) + dD(g)

The Equilibrium Constant K C The law of mass action states that, at equilibrium, the following ratio is a constant: K C = [C] c [D] d [A] a [B] b Whether K is based on partial pressures or on molarities, K is unitless. This is because every pressure is ratioed to a standard pressure of 1 bar and every concentration is ratioed to a standard concentration of 1M. aA(aq) + bB(aq) cC(aq) + dD(aq)

Properties of the Equilibrium Constant K P or K C K is unitless. K is a function of temperature. It will change as the temperature changes. The expression for K depends on the stoichiometry of the reaction. No knowledge of the reaction rate is necessary. K is NOT the rate constant k. Be careful in writing these two constants.

Examples of K K P = (P HI ) 2 (P H2 )(P I2 ) H 2 (g) + I 2 (g) 2HI(g) K C = [Ag(NH 3 ) 2 + ] [Ag + ] [NH 3 ] 2 Ag + (aq) + 2NH 3 (aq) Ag(NH 3 ) 2 + (aq) K C = [CH 3 COO - ] [H + ] [CH 3 COOH] CH 3 COOH(aq) CH 3 COO - (aq) + H + (aq)

Calculating K P K P = (P NH3 ) 2 (P N2 )(P H2 ) 3 N 2 (g) + 3H 2 (g) 2NH 3 (g) A mixture of hydrogen and nitrogen react to form ammonia. At 472°C, the equilibrium mixture of gases contains 7.38 bar H 2, 2.46 bar N 2, and bar NH 3. Calculate K P for this reaction. K P (472°C) = (0.166) 2 = 2.79 x (2.46)(7.38) 3 We could also calculate a K C for this reaction.

Calculating K C An aqueous solution of acetic acid is found to have the following equilibrium concentrations at 25°C: [CH 3 COOH] = M, [H + ] = 5.44 x M, and [CH 3 COO - ] = 5.44 x M. Calculate K C for the ionization of acetic acid at 25°C. K C (25°C) = (5.44 x ) (5.44 x ) = 1.79 x (0.0165) K C = [CH 3 COO - ] [H + ] [CH 3 COOH] CH 3 COOH(aq) CH 3 COO - (aq) + H + (aq)

What Does K Tell Us About a Reaction? The small value of K C says that, at equilibrium, the ratio of products (acetate and hydrogen ions) to reactants (acetic acid) is small. In other words, acetic acid does not ionize to a great extent in water at 25°C. When K is much less than 1, there are fewer products than reactants, and the forward reaction is not favored. This means the reverse reaction IS favored. We say, “The equilibrium lies to the left.” K C = [CH 3 COO - ] [H + ] = 1.79 x [CH 3 COOH] CH 3 COOH(aq) CH 3 COO - (aq) + H + (aq)

What Does K Tell Us About a Reaction? When K is much greater than 1, there are more products than reactants, and the forward reaction is favored. We say, “The equilibrium lies to the right.” How do we interpret K ≈ 1? K P = (P HI ) 2 (P H2 )(P I2 ) H 2 (g) + I 2 (g) 2HI(g) K P (298 K) = 794 and K P (700 K) = 54 These values of K P tell us that the forward reaction is favored at both room temperature and at 700 K. However, the values also tell us that the forward reaction is more favored at room temperature.

K for the Reverse Reaction? K P,forward = (P HI ) 2 (P H2 )(P I2 ) H 2 (g) + I 2 (g) 2HI(g) K P,forward (298 K) = 794 and K P,forward (700 K) = 54 K P,reverse = (P H2 )(P I2 ) (P HI ) 2 2HI(g) H 2 (g) + I 2 (g) K (reverse rxn) = 1 K (forward rxn) K P,reverse (298 K) = and K P,reverse (700 K) = 0.019

K Depends on the Stoichiometry N 2 O 4 (g) 2NO 2 (g)K P,stoiA = (P NO2 ) 2 (P N2O4 ) 2N 2 O 4 (g) 4NO 2 (g)K P,stoiB = (P NO2 ) 4 (P N2O4 ) 2 stoichiometry A stoichiometry B K P,stoiB = ( K P,stoiA ) 2

K and Hess’s Law 2NOBr(g) 2NO(g) + Br 2 (g) K P,#1 = (P NO ) 2 (P Br2 ) (P NOBr ) 2 Br 2 (g) + Cl 2 (g) 2BrCl(g) K P,#2 = (P BrCl ) 2 (P Br2 )(P Cl2 ) reaction #1 reaction #2 K P = (P NO ) 2 (P BrCl ) 2 = (K P,#1 )( K P,#2 ) (P NOBr ) 2 (P Cl2 ) 2NOBr(g) + Cl 2 (g) 2NO(g) + 2BrCl(g) The equilibrium constant expression is the product of the expressions for the individual steps.

More Properties of K K of a reaction in the reverse direction is the inverse of K for the reaction in the forward direction. K for a reaction multiplied by a number is K raised to a power equal to that number. K for a reaction made up of two or more steps is the product of the K’s for the individual steps (Hess’s Law). Review how ΔH is treated for each of these three and compare to K’s treatment.