Lecturer PSOE Dan Garcia

Slides:



Advertisements
Similar presentations
©UCB CPSC 161 Lecture 3 Prof. L.N. Bhuyan
Advertisements

CENG 311 Decisions in C/Assembly Language
Goal: Write Programs in Assembly
Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
Lecture 5: MIPS Instruction Set
CS/COE0447 Computer Organization & Assembly Language
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /15/2013 Lecture 11: MIPS-Conditional Instructions Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER.
Deeper Assembly: Addressing, Conditions, Branching, and Loops
ECE 232 L6.Assemb.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 6 MIPS Assembly.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 5: Data Transfer Instructions / Control Flow Instructions Partially adapted from Computer.
CMPT 334 Computer Organization Chapter 2 Instructions: Language of the Computer [Adapted from Computer Organization and Design 5 th Edition, Patterson.
The University of Adelaide, School of Computer Science
CS61C L17 Introduction to MIPS: Instruction Representation III (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 6 – Introduction to MIPS Data Transfer & Decisions I Pieter Abbeel’s recent.
CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61CL L03 MIPS I: Registers, Memory, Decisions (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 – Introduction to MIPS Decisions II In what may be regarded as the most.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS : Decisions II People are wondering what the next.
Lecture 4: Loads, Logic, Loops. Review Memory is byte-addressable, but lw and sw access one word at a time. These instructions transfer the contents of.
ENEE350 Spring07 1 Ankur Srivastava University of Maryland, College Park Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005.”
CS61C L7 MIPS Decisions (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L7 MIPS: Load & Store, Decisions (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L7 MIPS Decisions (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #7 – MIPS.
CS 61C L07 MIPS Memory (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #7: MIPS Memory & Decisions.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 07 Introduction to MIPS : Decisions II Researchers at Microsoft and UW.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 6: Logic/Shift Instructions Partially adapted from Computer Organization and Design, 4.
Data Transfer & Decisions I (1) Fall 2005 Lecture 3: MIPS Assembly language Decisions I.
CS61C L09 Introduction to MIPS : Data Transfer and Decisions (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L10 Introduction to MIPS: Decisions II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L10 Introduction to MIPS: Decisions II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
More decisions and logic (1) Fall 2010 Lecture 4: Loads, Logic, Loops.
MIPS Instruction Set Advantages
Intel has developed a new technique to generate random numbers that is suitable for integration directly into the CPU! This circuit can turn out 2.4 billion.
CS 61C: Great Ideas in Computer Architecture Intro to Assembly Language, MIPS Intro Instructors: Krste Asanovic & Vladimir Stojanovic
IT253: Computer Organization Lecture 5: Assembly Language and an Introduction to MIPS Tonga Institute of Higher Education.
IT 251 Computer Organization and Architecture More MIPS Control Instructions Chia-Chi Teng.
Chapter 10 The Assembly Process. What Assemblers Do Translates assembly language into machine code. Assigns addresses to all symbolic labels (variables.
MIPS coding. Review Shifting – Shift Left Logical (sll) – Shift Right Logical (srl) – Moves all of the bits to the left/right and fills in gap with 0’s.
Computer Architecture CSE 3322 Lecture 3 Assignment: 2.4.1, 2.4.4, 2.6.1, , Due 2/3/09 Read 2.8.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 07 Introduction to MIPS : Decisions II Guest Lecturer Alan Christopher.
CDA 3101 Spring 2016 Introduction to Computer Organization
CS 61C: Great Ideas in Computer Architecture Intro to Assembly Language, MIPS Intro 1 Instructors: Vladimir Stojanovic & Nicholas Weaver
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
MIPS: Load & Store, Decisions. Memory management review Three 3’s Picking blocks off free list  best-, first-, next-fit Attempts to solve external fragmentation.
Deeper Assembly: Addressing, Conditions, Branching, and Loops
MIPS Instruction Set Advantages
CS2100 Computer Organisation
Conditional Branches What distinguishes a computer from a simple calculator is its ability to make decisions Decisions are made using the if statement,
Lecturer SOE Dan Garcia
Lecturer PSOE Dan Garcia
CS170 Computer Organization and Architecture I
The University of Adelaide, School of Computer Science
ECE232: Hardware Organization and Design
C second, objective-c, Go up!
Instruction encoding The ISA defines Format = Encoding
Lecturer SOE Dan Garcia
3.
Instruction encoding The ISA defines Format = Encoding
COMS 361 Computer Organization
Lecturer SOE Dan Garcia
Instruction encoding The ISA defines Format = Encoding
MIPS Assembly.
Instruction encoding The ISA defines Format = Encoding
MIPS assembly.
COMS 361 Computer Organization
MIPS instructions.
Presentation transcript:

Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 10 – Introduction to MIPS Decisions II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia EECS BEARS conf Thu/Fri!  You’re welcome to attend any of the research talks Thu morning, cool open houses Thu aft or tutorials Fri morning. Past students have asked to be told of this. Go! Greet class www.eecs/BEARS2005/

Compiling C if into MIPS (1/2) Exit i == j? f=g+h f=g-h (false) i != j (true) i == j Compile by hand if (i == j) f=g+h; else f=g-h; Use this mapping: f: $s0 g: $s1 h: $s2 i: $s3 j: $s4

Compiling C if into MIPS (2/2) Exit i == j? f=g+h f=g-h (false) i != j (true) i == j Compile by hand if (i == j) f=g+h; else f=g-h; Final compiled MIPS code: beq $s3,$s4,True # branch i==j sub $s0,$s1,$s2 # f=g-h(false) j Fin # goto Fin True: add $s0,$s1,$s2 # f=g+h (true) Fin: Note: Compiler automatically creates labels to handle decisions (branches). Generally not found in HLL code.

Review Memory is byte-addressable, but lw and sw access one word at a time. A pointer (used by lw and sw) is just a memory address, so we can add to it or subtract from it (using offset). A Decision allows us to decide what to execute at run-time rather than compile-time. C Decisions are made using conditional statements within if, while, do while, for. MIPS Decision making instructions are the conditional branches: beq and bne. New Instructions: lw, sw, beq, bne, j

From last time: Loading, Storing bytes 1/2 In addition to word data transfers (lw, sw), MIPS has byte data transfers: load byte: lb store byte: sb same format as lw, sw

Loading, Storing bytes 2/2 What do with other 24 bits in the 32 bit register? lb: sign extends to fill upper 24 bits xxxx xxxx xxxx xxxx xxxx xxxx x zzz zzzz byte loaded …is copied to “sign-extend” This bit Normally don't want to sign extend chars MIPS instruction that doesn’t sign extend when loading bytes: load byte unsigned: lbu

Overflow in Arithmetic (1/2) Reminder: Overflow occurs when there is a mistake in arithmetic due to the limited precision in computers. Example (4-bit unsigned numbers): +15 1111 +3 0011 +18 10010 But we don’t have room for 5-bit solution, so the solution would be 0010, which is +2, and wrong.

Overflow in Arithmetic (2/2) Some languages detect overflow (Ada), some don’t (C) MIPS solution is 2 kinds of arithmetic instructions to recognize 2 choices: add (add), add immediate (addi) and subtract (sub) cause overflow to be detected add unsigned (addu), add immediate unsigned (addiu) and subtract unsigned (subu) do not cause overflow detection Compiler selects appropriate arithmetic MIPS C compilers produce addu, addiu, subu

Two Logic Instructions 2 lectures ago we saw add, addi, sub Here are 2 more new instructions Shift Left: sll $s1,$s2,2 #s1=s2<<2 Store in $s1 the value from $s2 shifted 2 bits to the left, inserting 0’s on right; << in C Before: 0000 0002hex 0000 0000 0000 0000 0000 0000 0000 0010two After: 0000 0008hex 0000 0000 0000 0000 0000 0000 0000 1000two What arithmetic effect does shift left have? Shift Right: srl is opposite shift; >>

Loops in C/Assembly (1/3) Simple loop in C; A[] is an array of ints do { g = g + A[i]; i = i + j; } while (i != h); Rewrite this as: Loop: g = g + A[i]; i = i + j; if (i != h) goto Loop; Use this mapping: g, h, i, j, base of A $s1, $s2, $s3, $s4, $s5

Loops in C/Assembly (2/3) Final compiled MIPS code: Loop: sll $t1,$s3,2 #$t1= 4*i add $t1,$t1,$s5 #$t1=addr A lw $t1,0($t1) #$t1=A[i] add $s1,$s1,$t1 #g=g+A[i] add $s3,$s3,$s4 #i=i+j bne $s3,$s2,Loop# goto Loop # if i!=h Original code: Loop: g = g + A[i]; i = i + j; if (i != h) goto Loop; Do goto first Then I = I + J Then 1st 4

Loops in C/Assembly (3/3) There are three types of loops in C: while do… while for Each can be rewritten as either of the other two, so the method used in the previous example can be applied to while and for loops as well. Key Concept: Though there are multiple ways of writing a loop in MIPS, the key to decision making is conditional branch

Inequalities in MIPS (1/3) Until now, we’ve only tested equalities (== and != in C). General programs need to test < and > as well. Create a MIPS Inequality Instruction: “Set on Less Than” Syntax: slt reg1,reg2,reg3 Meaning: if (reg2 < reg3) reg1 = 1; else reg1 = 0; In computereeze, “set” means “set to 1”, “reset” means “set to 0”. reg1 = (reg2 < reg3); Same thing…

Inequalities in MIPS (2/3) How do we use this? Compile by hand: if (g < h) goto Less; #g:$s0, h:$s1 Answer: compiled MIPS code… slt $t0,$s0,$s1 # $t0 = 1 if g<h bne $t0,$0,Less # goto Less # if $t0!=0 # (if (g<h)) Less: Branch if $t0 != 0  (g < h) Register $0 always contains the value 0, so bne and beq often use it for comparison after an slt instruction. A slt  bne pair means if(… < …)goto…

Inequalities in MIPS (3/3) Now, we can implement <, but how do we implement >, ≤ and ≥ ? We could add 3 more instructions, but: MIPS goal: Simpler is Better Can we implement ≤ in one or more instructions using just slt and the branches? What about >? What about ≥?

Immediates in Inequalities There is also an immediate version of slt to test against constants: slti Helpful in for loops if (g >= 1) goto Loop Loop: . . . slti $t0,$s0,1 # $t0 = 1 if # $s0<1 (g<1) beq $t0,$0,Loop # goto Loop # if $t0==0 # (if (g>=1)) C M I P S An slt  beq pair means if(… ≥ …)goto…

What about unsigned numbers? Also unsigned inequality instructions: sltu, sltiu …which sets result to 1 or 0 depending on unsigned comparisons What is value of $t0, $t1? ($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex) slt $t0, $s0, $s1 sltu $t1, $s0, $s1

MIPS Signed vs. Unsigned – diff meanings! MIPS Signed v. Unsigned is an “overloaded” term Do/Don't sign extend (lb, lbu) Don't overflow (addu, addiu, subu, multu, divu) Do signed/unsigned compare (slt, slti/sltu, sltiu)

Proj1 due in 9 days – start EARLY! We have a midterm & review date Administrivia Proj1 due in 9 days – start EARLY! Out on Wed, due Friday [extended date] The following hw (smaller) still due Wed We have a midterm & review date Review: Sun 2005-03-06, Loc/Time TBA Midterm: Mon 2005-03-07, Loc/Time TBA DSP or Conflicts? Email acarle@cs Dan’s OH cancelled tomorrow Go to the BEARS conference!

Example: The C Switch Statement (1/3) Choose among four alternatives depending on whether k has the value 0, 1, 2 or 3. Compile this C code: switch (k) { case 0: f=i+j; break; /* k=0 */ case 1: f=g+h; break; /* k=1 */ case 2: f=g–h; break; /* k=2 */ case 3: f=i–j; break; /* k=3 */ }

Example: The C Switch Statement (2/3) This is complicated, so simplify. Rewrite it as a chain of if-else statements, which we already know how to compile: if(k==0) f=i+j; else if(k==1) f=g+h; else if(k==2) f=g–h; else if(k==3) f=i–j; Use this mapping: f:$s0, g:$s1, h:$s2, i:$s3, j:$s4, k:$s5

Example: The C Switch Statement (3/3) Final compiled MIPS code: bne $s5,$0,L1 # branch k!=0 add $s0,$s3,$s4 #k==0 so f=i+j j Exit # end of case so Exit L1: addi $t0,$s5,-1 # $t0=k-1 bne $t0,$0,L2 # branch k!=1 add $s0,$s1,$s2 #k==1 so f=g+h j Exit # end of case so Exit L2: addi $t0,$s5,-2 # $t0=k-2 bne $t0,$0,L3 # branch k!=2 sub $s0,$s1,$s2 #k==2 so f=g-h j Exit # end of case so Exit L3: addi $t0,$s5,-3 # $t0=k-3 bne $t0,$0,Exit # branch k!=3 sub $s0,$s3,$s4 #k==3 so f=i-j Exit:

Peer Instruction We want to translate *x = *y into MIPS (x, y ptrs stored in: $s0 $s1) A: add $s0, $s1, $zero B: add $s1, $s0, $zero C: lw $s0, 0($s1) D: lw $s1, 0($s0) E: lw $t0, 0($s1) F: sw $t0, 0($s0) G: lw $s0, 0($t0) H: sw $s1, 0($t0) 1: A 2: B 3: C 4: D 5: EF 6: EG 7: FE 8: FH 9: HG 0: GH Answer: [correct=5, E->F] We must first load the contents of y’s pointee into a temp variable [$t0], which is E. Then we have to store $t0 back into x’s pointee, which is F.

Peer Instruction ($s0=i, $s1=j) do {i--;} while(__); Loop:addi $s0,$s0,-1 # i = i - 1 slti $t0,$s1,2 # $t0 = (j < 2) beq $t0,$0 ,Loop # goto Loop if $t0 == 0 slt $t0,$s1,$s0 # $t0 = (j < i) bne $t0,$0 ,Loop # goto Loop if $t0 != 0 ($s0=i, $s1=j) 1: j < 2 && j < i 2: j ≥ 2 && j < i 3: j < 2 && j ≥ i 4: j ≥ 2 && j ≥ i 5: j > 2 && j < i 6: j < 2 || j < i 7: j ≥ 2 || j < i 8: j < 2 || j ≥ i 9: j ≥ 2 || j ≥ i 0: j > 2 || j < i Ans: 9 Beq is the opposite (opposite of j<2 is j≥2), bne is just the test (j<i), and you restart the loop if either is true, so it’s an or (||) What C code properly fills in the blank in loop below? do {i--;} while(__);

“And in conclusion…” In order to help the conditional branches make decisions concerning inequalities, we introduce a single instruction: “Set on Less Than”called slt, slti, sltu, sltiu One can store and load (signed and unsigned) bytes as well as words Unsigned add/sub don’t cause overflow New MIPS Instructions: sll, srl slt, slti, sltu, sltiu addu, addiu, subu