Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of.

Slides:



Advertisements
Similar presentations
UTS:Faculty of Engineering and IT International Leaders in Practice-Based Education The 16th Asia-Pacific Conference on Communications 31 Oct. - 3 Nov.
Advertisements

MOLDPOS – Initial Meeting, Chisinau, HRS-Computation and DFHRS-Concept Prof. Dr. Reiner Jäger, HSKA DFHRS (Digital FEM Height Reference Surface)
T GPS Fundamentals Your location is: 37 o ’ N 122 o ’ W.
Nordic Geodetic Commision, WG for Geodynamics, Annual Meeting 2005, Masala /Finland, May 3-4 Fennoscandian Uplift Observed with Absolute Gravity Measurements.
Development of geodetic databases for real time MOLDPOS service Technical University of Moldova Agency for Land Relations and Cadastre (ARLC) As. Prof.
Location Karlsruhe ▪ HsKA – a green campus in a green city...
United Nations Workshop on GNSS Session 2 - Jäger / RTCM Messages Chisinau, 17-May-2010 THE NEW RTCM 3.1 TRANSFORMATION MESSAGES Declaration, Generation.
LINDA MORGAN PRINCIPAL CONSULTANT – SPATIAL POSITIONING WESTERN AUSTRALIA SURVEYING CONFERENCE 2013 Geodetic Stuff You Need to Know: Datums, Standards.
National report of LITHUANIA THE 4th BALTIC SURVEYORS FORUM, 2013, Ventspils, LATVIA Eimuntas Parseliunas Geodetic Institute of Vilnius Technical University.
TWG Berne November 2005 EUREF High Rate GPS for Positioning, Atmospheric Effects and Natural Hazards Warning System EPN Study Group Chairmen G. Stangl.
An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
Better Positions and Improved Access to the National Spatial Reference System  Multi-Year CORS Solution  National Adjustment of 2011  New NGS Datasheet.
Refinements to the North American Datum of 1983 Multi-Year CORS Solution and the National Adjustment of 2011 Dr. Neil D. Weston Chief, Spatial Reference.
Geographic Datums Y X Z The National Imagery and Mapping Agency (NIMA) and the Defense Mapping School Reviewed by:____________ Date:_________ Objective:
Marc Véronneau Canadian Geodetic Survey, Surveyor General Branch
Changing Reference Frame Frank Gielsdorf technet GmbH Berlin.
IMPLEMENTATION OF THE NEW COORDINATE SYSTEM IN SLOVENIA Belgrade, 11 th and 12 th May 2007M.Sc. Blaž Mozetič.
Global Navigation Satellite System 1 G N S S WEB-simulation.
AN INDUSTRY APPROACH TO PRECISE POINT POSITIONING GNSS PPP WORKSHOP D. Calle A. Mozo P. Navarro R. Píriz D. Rodríguez G. Tobías JUNE 13 TH, GNSS.
Geodetic Control Network Lecture 1. The purpose of Geodetic Control Networks, their application and the history of their establishment.
04/01/08 Conference on Quality of tertiary education and the economic policy prof. dr. Andreja KOCIJANČIČ, Rector April 2008.
Permanent GPS Stations and their Influence on the Geodetic Surveys in Israel Gershon Steinberg Survey of Israel 1 Lincoln St. Tel-Aviv 65220, Israel Gilad.
GEODETIC INFRASTRUCTURE Walter Volkmann Manager of Technical Operations L. D. Bradley Land Surveyors Gainesville, Florida.
GLONASS Government Policy, Status and Modernization
LINK TO SLIDES: ftp://ftp.ngs.noaa.gov/dist/whenning/FWS2011/
SEE project idea and search Partners. PROPOSALS FOR ROAD GIS IN CENTRAL ASIA REPUBLICS Giorgio Manzoni, Centre of Excellence TELEGEOMATICS, University.
Geography 370 Locating Positions on the Earth
1 GNSS Reference Station Network Applications – Status and Vision Herbert Landau Trimble Munich, Germany January 2011.
Faculty of Applied Engineering and Urban Planning Civil Engineering Department Geographic Information Systems Spatial Referencing Lecture 4 Week 6 1 st.
Mr.Samniang Suttara B.Eng. (Civil), M.Eng. (Survey) Topcon Instruments (Thailand) Co.,Ltd. Tel Satellite Surveying.
COSMEMOS: a collaborative project A. Antonini (1), E. Barro (2), R. Benedetti (1), S. Cristofori (1), A. Orlandi (1), A. Ortolani (1), L. Rovai (1) (1)
Innovative Solutions for tomorrow’s transportation needs Florida Permanent Reference Network Where are we headed now?
Geoid Modeling at NOAA Dru A. Smith, Ph.D. National Geodetic Survey National Ocean Service, NOAA November 13, 2000.
USE OF GPS FOR CROP AREA MEASUREMENT The CIRAD experience.
Main tasks  2 kHz distance measurements to 60 satellites  Precision: 2.5 mm single shot;
Improved Hybrid Geoid Modeling and the FY 2000 Geoid Models Dr. Daniel R. Roman January 16, : :30 Conference Room 9836.
TERRESTRIAL REFERENCE SYSTEMS FOR GLOBAL NAVIGATION SATELLITE SYSTEMS
20 FEB 2009 Salt Lake City, UTACSM-MARLS-UCLS-WFPS Conference 2009 Geoid Modeling, GRAV-D and Height Mod.
Assessment of Reference Frame Stability trough offset detection in GPS coordinate time series Dragan Blagojević 1), Goran Todorović 2), Violeta Vasilić.
Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge” Theresa M. Damiani, Andria.
Representing the Earth
Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge” Theresa M. Damiani, Andria.
Introduction to GPS/GNSS Introduction to Tidal and Geodetic Vertical Datums Corbin Training Center January 7, 2009 Jeff Little Guest Speaker ,
New Vertical Datum: plans, status, GRAV-D update FGCS San Diego, CA. July 11, 2011 Mark C. Eckl NGS Chief of Observation and Analysis Division, New Vertical.
GRAV-D Part II : Examining airborne gravity processing assumptions with an aim towards producing a better gravimetric geoid Theresa Diehl*, Sandra Preaux,
Meeting the Needs of the IGS Real-Time PPP User Community
OUTLINE:  definition and history  three major models  how are reference shapes used  geodetic systems G EODESY.
GMAT9205 – Fundamentals of Geopositioning Gael Desliens
Lecture 21 – The Geoid 2 April 2009 GISC-3325.
The Height Modernization Program in the United States and the Future of the National Vertical Reference Frame 1 Renee Shields National Geodetic Survey,
AUSGeoid Richard Bean Robyn Stevens 26 May Geoid 3D surface of equal gravity (Equipotential) Not smooth like an ellipsoid Transformation needed.
ST236 Site Calibrations with Trimble GNSS
Geodetic Applications of GNSS within the United States Dr. Gerald L. Mader National Geodetic Survey NOS/NOAA Silver Spring, Maryland USA Munich Satellite.
Development of permanent GNSS stations Network in Republic of Moldova Vasile Chiriac Technical University of Moldova Agency for Land Relations and Cadastre.
GEOID03 in Louisiana and Alaska Dr. Yan M Wang and Dr. Daniel R Roman Geodesist, NGS/NOAA ACSM Annual Conference and Technology Exhibition Orlando, FL.
Investigation of the use of deflections of vertical measured by DIADEM camera in the GSVS11 Survey YM Wang 1, X Li 2, S Holmes 3, DR Roman 1, DA Smith.
6th EC-GIS, Jun 2000, Lyon, France A Spatial Reference System for Europe 1 A Spatial Reference System (by co-ordinates) for Europe
49th CGSIC - Timing Subcommittee Outline of presentation  Change in the definition of international time scales (ITU, CCTF)  UTC  TAI  Leap.
National Height Modernization Eastern Regional Meeting March 4, 2014 Continuously Operating Reference Stations (CORS) Neil D. Weston National Geodetic.
GPS Site Calibration Objectives  Explain the Co-ordinate systems used in GPS Surveying.  Explain what a calibration is.  Explain the 5 main process.
Nic Donnelly – Geodetic Data Analyst 5 March 2008 Vertical Datum Issues in New Zealand.
Scientific Roadmap towards Height System Unification with GOCE 5th International GOCE User Workshop, Paris, Th. Gruber (1), R. Rummel (1), M.
Redundancy in Dynamic Positioning (DP) Applications based on Satellite Navigation. High Precision Navigation and Positioning Conference,
Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland 1 Radical change to a modern general control network XXIII FIG-Congress.
Astronomical Institute University of Bern 1 Astronomical Institute, University of Bern, Switzerland * now at PosiTim, Germany 5th International GOCE User.
Permanent GPS Stations and their Influence on the
Organization of the EU4M-Consortium
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Presentation transcript:

Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of Databases for a User- and an RTCM-3.1 Service based GNSS-Positioning    Reiner Jäger Hochschule Karlsruhe Technik und Wirtschaft - University of Applied Sciences Faculty of Geomatics Studiengang Vermessung und Geomatik & International Programme Geomatics (MSc) Institut für Angewandte Forschung (IAF) Moltkestrasse 30, D-76133 Karlsruhe www.dfhbf.de www.galileo-bw.de; www.moldpos.eu

Situation of GNSS for a Global Positioning GPS GALILEO 2014 GLONASS 30 Satellites 2010 COMPASS GNSS - Systeme „BeiDou-1/2“ 14-April-07

ITRS <= International GNSS Service (IGS) „Monthly Coordinate Files“ (Internet) ETRS89 =: ITRS1989_01-1989 <_1_cm Consistency!

European GNSS- Services (ITRF-based, often ETRF89) RTCM- Phase Corrections cm -Solutions __________________________________________ SAPOS® + ascos® SWIPOS® + SwissSat® : SwePos® CzePos® LatPos® MoldPos ® … Hungary, Poland, Slowenia, Romania, (East European States, Russia) ...many others worldwide!

GNSS-Positioning-Services …Siberian Positioning Service (SRPOS) www.euref.eu „ITRF-related“ e.g. ETRF89 GNSS-Networks in EURASIA: SAPOS®/Axio-Net/VRSNow® , SWIPOS®/SwissSat® … SwePos®, CzePos® ,LatPos®, CroPOS®, HePos® , … Hungary, Slowenia, Romania, Moldavia, …Siberian Positioning Service (SRPOS)

RTCM (for all types of corrections and accuracies)

GNSS-Reference Station Software „GNSS-Reference Station Software“ e.g. Spider (Leica Geosystems) GPSNet (Trimble)

GNSS-Services and RTCM-based Positioning Basic GNSS-Data collected at the GNSS-Reference-Stations at a Time t-∆t 1. Area Correction Parameters (ACP) 2. Master-Auxiliary (MAX) RTCM 3.1 Observations- Corrections b 3. Virtual Reference Station (VRS) RTCM GNSS-Networking Software (B,L,h)GNSS-Datum NMEA String 1 - 2 cm

Space/Satellite Based Augmentation Systems (SBAS) ….. for DGNSS-Codemeasurements (DNGSS-Correction Standard RTCM or RTCA) … WAAS (USA),CNSS (China),GAGAN/IRNSS (India),QZSS/MSAS (Japan),SDCM (Russia)

Space/Satellite Based Augmentation Systems (SBAS) ….. for DGNSS-Codemeasurments (RTCM-2.0-Inhalt or RTCA) … WAAS (USA),CNSS (China),GAGAN/IRNSS (Indien),QZSS/MSAS (Japan),SDCM (Russland)

(RTCA as „SSR“-Corretions) Space/Satellite Based Augmentation Systems (SBAS) ….. für DGNSS-Codemessungen (DNGSS-Korrekturen. Stanadrd RTCM oder RTCA) EGNOS (RTCA as „SSR“-Corretions) European WAAS alias „GNSS1“ GNSS2 =: GALILEO RTCA Grid-Representations of VTEC-Value IP IP … WAAS (USA),CNSS (China),GAGAN/IRNSS (India),QZSS/MSAS (Japan),SDCM (Russia

RTCM- and RTCA Corrections via Internet - NTRIP

EUREP-IP and IGS as European and worlwide Referencestationnetworks RTCM3.1 OSR-Correction-Data for Code- and Phasenmeasurements http://igs.bkg.bund.de/ Simple, far reaching and low cost entrances Into precise DGNSS- Positioning

EUREP-IP and IGS as European and worlwide Referencestationnetworks RTCM3.1 OSR-Correction-Data for Code- and Phasenmeasurements

Precise Monitoring and Navigation of Objects

Precise Monitoring and Navigation of Objects

Precise Monitoring and Navigation of Objects EUREF or IGS RTCM-Corrections NTRIP-Format Mobile Internet (USB-Stick) and InterNet GNSS-Radio

Precise Monitoring and Navigation of Objects www.bernot.org

Absolute GNSS - Precise Point Positioning „PPP“ ? End of the monopole of DGNSS - Reference Station Servcices ? Broadcast Standard IGS-Products („SSR“) + Code/Phase + Modelling Satellite Orbit: 3 m Satellite Orbit: 5 -10 cm Satellite Clocks: 3 m Satellite Clock: 5 ns - 0.1 ns Ionosphere: 7 -10 m Ionosphere: 0.25 m Troposphere: 0.5 m Troposphere: 5 cm State of „PPP“ in Postprocessing 24 h Observation time mm – cm 30 min observation time Beobachtungszeit: 0.5 – 1 dm Code Obser- vations ± 10m

Absolute GNSS Present Standard: Precise Point Positioning „PPP“ Static and postprocessed (30 Min = 0.05m) Absolute („NON-DGNSS) Upload of Data „C-Nav“ (55.000 Kunden) http://www.cctechnol.com/site.phpm-cm „AUSPOS (free!)“ http://www.ga.gov.au/geodesy/sgc/wwwgps/ „Natural Ressources Canada“ www.geod.nrcan.gc.ca/products-produits/ppp_e.php Absolute GNSS in Trend: Online Precise Point Positioning „0PPP“ SSR-Provider Dynamical absolute GNSS „Online PPP“ (RTK Modus)“ GNSS Server-Client for SSR LowCost GNSS-Sensors Derzeit ? 1 dm … 1 cm ? < 2 m !

Absolute GNSS als Target: Online Precise Point Positioning „0PPP“

GNSS-Further Developments &Trends - LowCost M. Becker, ZfV 10/09

GNSS-Further Developments &Trends - GNSS/INS Drones Autonomous drones (below) for documentation of the state of different kind of facilities Autonomous GNSS- bzw. GNSS/INS- boatsdrone for hydrological application (right up and right down)

GNSS-Further Developments & Trends – Platform Orientation Datenerfassung mit GNSS/INS-positionierten und orientierten Multisensor-Plattformen Entwicklung von Datenerfassungs- systemen für Facilites in Thesisarbeiten Kooperation mit der Industrie, z.B. www.ptv.ag

Indoor-Positionierung (WLAN u.a.) GNSS-Further Developments&Trends – Seamless Out-/Indoor Positioning Indoor-Positionierung (WLAN u.a.) Nahtlose Indoor-Outdoor-Positionierung Entwicklungen mit der Industrie www.galileo-bw.de www.afusoft.com

Solutions – GNSS-Satellite Navigation and Mobile IT Trends?

Solutions – GNSS-Satellite Navigation and Mobile IT www.galileo-bw.de

Deformation Integrity Monitoring for GNSSPositioning Services including a Scalable Hazard Monitoring by the Karlsruhe Approach (MONIKA) www.monika.ag

Classical Datum Systems and ITRF - Transformations Modern Georeferencing: Global Reference and GNSS-based ITRF-based Reference Systems www.geozilla.de Srict and General TRAFO (Enabled & GNSS-practice ITRF / ETRF89 - Datum Old Classical Systems

Present Transformation Problem

Present Transformation Problem Brazilien Transformations- Projekt www.geozilla.de Strict and General TRAFO ITRF / SIRGAS - Datum Old Classical Systems www.geozilla.de

Plan Transformation Problem and Solution PART1 Plan Transformation Problem and Solution www.geozilla.de

Present Transformation Problem

Solution of the Transformation Problem 3D Similarity Transformation Related to (B,L,h) Advantage: 1D or 2D or 3D identical points !!!

Germany West Strict 3D-Trafo in (B,L, (h)) Residuals Germany Only 1 set of 7 parameters (= Without „Patching“) Mean Residual: 1.49 m Max. Residual: 2.43 m Longwaved Systematic Errors „Weak Shapes“ www.geozilla.de

Marked ObservationTests 18 sets of 8 parameters („Patching“ in continuously modelled meshes) => Essential decrease of residuals => DFLBF/COPAG transformation parameter DB Residuals COPAG Software Marked ObservationTests www.geozilla.de

DFLBF_COPAG_DB – Hungaria

DFLBF_COPAG_DB – Accuray Surface, Hungaria Software

Height Reference Surface Representation DFHRS-DataBases (DFHRS_DB) PART 2 Height Reference Surface Representation (DFHRS Concept) and DFHRS-DataBases (DFHRS_DB)

Height Transformation Problem – GNSS Heighting Geoid (HBF) Ellipsoid GNSS Heighting „H from h- GNNS“ H HRS h h N H = h - N(B,L,h) "Geoid" or better : HRS

DFHRS-Concept H = hGPS(B,L) - DFHRS(B,L,h) korr Direct - No Identical Points - - Online - Postpro- cessed REALITY DFHRS-DB H = hGPS(B,L) - DFHRS(B,L,h) korr H = hGPS(B,L) - (NFEM(p|B,L,h) + ∆m·h)

DFRHS – Mathematical Model

Extension of the DFHRS-Concept to gravity observations hGNSS+ v = H + fT  p - hGPS· m H + v = H NG‘j + v j = fT  p + NG(d j) NFEM(p) N(pk) j + v = - fBT / M(B)  p +   (d,) j  j + v = - fLT/(N(B)cos(B))  p +  (d,) j g·S()dσ + v = NFEM(p)= fT  p

DFHRS Software Identical „Fitting“ Points (B,L,h;H) Meshes Patches

Weak-Shapes of Classical Gravimetric „Geoid“models 0.1 – 1.5 m ! EGG97 European Gravimetric Geoid 1997 Mean- up to lang-waved Errors 0.1 – 1.5 m ! => New Concepts, more „precise“ or better: (H,h)-fitted solutions

DFHRS_DB Design Parameters Design Studies < 5 - 10_cm DFHRS Germany Patch-Size (EGG97) 30 - 40 km for a < 1_cm DFHRS_DB 50 – 60 km for a < 3_cm DFHRS_DB 300 km for a < 10_cm DFHRS_DB (3-5) points per patch

Bilateral Cooperation Partner IBS DFHBF-Data Bases Official State Databases e.g. in German Countries ... Bilateral Cooperation Partner IBS WWW.IB-SEILER.DE

< 10cm DFHRS Europe – „Fittingpoint-Design“ ETRS89/EVRS „GPS-/Levelling- Points of EVN“ Fitting Points NFEM(p) =: h - H Used for the 1st Version < 10_cm DFHBFS Europe

<(1-3)cm_DFHRS Baltics (Latvia, Estonia, Lithuania) European HRS …. including <(1-3)cm_DFHRS Baltics (Latvia, Estonia, Lithuania) 10 km FEM Meshes Master Thesis of Mrs. Lauma Lace, Latvia at Karlsruhe University of Applied Sciences

European HRS… including < 3cm DFHRS_DB Germany 10 km FEM Meshes

< 1cm DFHRS_DB Germany < 1cm DFHRS_DB Luxembourg … including < 1cm DFHRS_DB Germany < 1cm DFHRS_DB Luxembourg Official State Standard … over years www.sapos.de 5 km FEM Meshes

DFHRS_DB - Product as CD-Installation of State Land Services in Germany CopyProtection inclusive

European HRS… including < (1-3) cm DFHRS_DB Ungary - Masterthesis in DFHRS-Project & Cooperationproject with A. Kenyeres, Fömi, Ungary 5 km FEM Meshes

DFHRS_DB USA

< 5 cm DFHRS_DB Florida (… Masterthesis )

DFLBF / DFHBF

DFLBF / DFHBF

RCTM3.0 Transformation Messages

RTCM 3.1 Observations Corrections & „7 RTCM Transformation Messages“ Transformation-Parameters (1021,1022) Residual-Grids and/or Geoid-Representations (1023,1024) Projection-Information (1025,1026,1027) sent by GNSS-Positioning-Service to GNSS-Positioning-User NMEA-based request to RTCM-Transformation Messages Server)

RCTM3.0 Transformation Messages (φV, λV) ∆φV ∆λV RTCM 3.0 WG Chair: V. Wegener, LGN Scientific Member: R. Jäger SLS Member: L. Lijvall Company-Representatives Active ..Leica: Dr. Euler ..Trimble: Dr. H. Landau ..Geo++: Dr. Wübbena Corresponding .. Septentrio .. Thales .. TopCon ... Novatel RTCM-Commission: R. Kalafus Area of validity for 7P transformation: origin and extension

RCTM3.0 Transformation Messages

RCTM3.0 Transformation Messages

Gridding of Reference Transformations Source CRS - Grid Target CRS - Grid Pi [(B,L)Class ] Reference Pi [(B,L,H)Class ] Transformations Pi [(B,L,h)GNSS ] Pi [N ] Pi [H=hGNSS - N ] Virtual Fitting Points Pi Virtual Fitting Points Pi Gridding 7 Para meter Trafo 7 Parameters 3 Residual Grid 1.] Grid of Ni 2.] Geoid/HRS Grid

RCTM 3.1 Transformation Messages – GZTra-Server and GZTra-Client

RCTM3.0 Transformation Messages Technical Concept by AdV Germany and RTCM WG GNSS-User (to be transformed) Available 2007 Dial-Server GNSS-Network-SW (Spider, GPSNet, etc.) „Your“ Reference Transformation Setting up the RTCM-Message in a TCP/IP Client-Server Concept Dynamic Generation of RTCM-Grid (State Survey of Baden-Württemberg)

Reference Transformations RCTM 3.1 Transformation Messages – GZTra-Server and GZTra-Client Reference Transformations DFHBF Florida DFHBF Bavaria DFLBF Bavaria www.geozilla.de