Simulation of the decay pion spectroscopy at JLab Sept. 6 2010 Tohoku Uni. S.Nagao Purpose Experimental outline Geant4 simulation Summary  yield & S/N.

Slides:



Advertisements
Similar presentations
Patrick Achenbach U Mainz May 2o14. Fundamental symmetries in light hypernuclei.
Advertisements

Investigations of Semileptonic Kaon Decays at the NA48 Еxperiment Milena Dyulendarova (University of Sofia “St. Kliment Ohridski”) for NA48 Collaboration.
E Analysis Update for the (e, e’K + ) spectroscopy exp. done in 2005 Yuncheng Han (Hampton University) for HKS-HES Collaboration Jan. 13,
Λ hypernuclea r spectroscop y at Jefferson Lab The 3 rd Korea-Japan on Nuclear and Hadron Physics at J-PARC, at Inha University in Korea 2014/3/20 – 2014/3/21.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
June 2004L. Benussi - DAFNE 2004 First results on hyper-nuclear spectroscopy from the FINUDA experiment at DANE Luigi Benussi INFN, Laboratori.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
Satoshi N. Nakamura, Tohoku University Study of Lambda hypernuclei with electron beams JLab HKS-HES collaboration, 2009, JLab Hall-C On behalf of JLab.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Beta and particle decay spectroscopy at the Super FRS Zenon Janas Nuclear Spectroscopy Division Warsaw University.
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
GlueX Particle Identification Ryan Mitchell Indiana University Detector Review, October 2004.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Yusuke TSUCHIKAWA R. Hashimoto, Q. He, T. Ishikawa, S. Masumoto, M. Miyabe, N. Muramatsu, H. Shimizu, Y. Tajima, H. Yamazaki, R. Yamazaki, and FOREST collaboration.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Decade of Hypernuclear Physics at JLAB and Future Prospective in 12 GeV Era Liguang Tang Department of Physics, Hampton University & Jefferson National.
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Analysis memo (JLab E05-115) 30 May 2014 Graduate school of science, Tohoku University Toshiyuki Gogami.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
Calibration of the new Particle Identification Detector (PID) Tom Jude, Derek Glazier, Dan Watts.
Hiroaki Ohnishi RIKEN For the J-PARC E15 collaboration A search for deeply bound kaonic nuclear states by in-flight 3 He(K -,n) reaction ストレンジネスとエキゾティクス・理論の課題.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Z boson mass reconstruction Caroline Steiblin Prof. Al Goshaw Dr. Andrea Bocci Duke University 1.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Impact parameter resolutions for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
1 Fast Pixel Simulation Howard Wieman, Xiangming Sun Lawrence Berkeley Lab.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
Study of light hypernuclei by the (e,e’K + ) reaction Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab E collaboration, 2009, JLab.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Hypernuclear Spectroscopy with Electron Beams
L. Tang Hampton University / JLAB On behalf of Hall A collaboration
Young Researchers Session in IFIN-HH 2016
Florida International University, Miami, FL
Experimental Tests of Charge Symmetry Breaking in Hypernuclei
Kaons Propagation Through Nuclei
The First
Precision Measurement of η Radiative Decay Width via Primakoff Effect
for meson spectroscopy
Marcin Zieliński Paweł Moskal Andrzej Kupść
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
L. Tang Hampton University / JLAB On behalf of Hall A collaboration
Progress on J-PARC hadron physics in 2016
The Detector System of the MICE Experiment
Presentation transcript:

Simulation of the decay pion spectroscopy at JLab Sept Tohoku Uni. S.Nagao Purpose Experimental outline Geant4 simulation Summary  yield & S/N  momentum calibration  detector configuration  momentum resolution  particle identification  yield estimation Contents

outline talk about weak decay pion spectroscopy of hyper nuclear realistic simulation about decay pion spectroscopy focus on the pion from 4 Λ H (4 body system) expected value to perform experiment decay pion yield S/N ratio momentum calibration momentum resolution particle ID

What is the decay pion spectroscopy ? (purpose) We had established the (e,e’K + ) reaction spectroscopy at JLab We push ahead with hyper nuclear research using electron beam decay pion spectroscopy Tag spectrometer (FWHM~100keV/c) deduce mass M HYP M ncl M π, p π deduce the mass of hyperfragment <momentum resolution 130 keV (FWHM) ※ (e,e’K) reaction spectroscopy ~300keV ( 12 Λ B g.s.)

Hyper nuclei Number of π - two bodyDecay Events othersp π (two body) (MeV/c) total ΛH4ΛHπ - 4 He76072%935% or 5 Λ He %- What kind of hyperfragment can be measured ? emulsion data in stopped K - reaction (G. BOHM et al. Nucl. Phys. B4 (1968) 511) feasibility test ; in Spring 2012 at J-Lab (E (5days)) FWHM 3~4 MeV/c pion from 4 Λ H π - momentum (MeV/c) 12 C target (stopped K - π - )

What should we estimate for the experiment ? 1.decay pion yield 2.S/N ratio 3. method of momentum calibration 4. momentum resolution 5. method of particle ID outline 1.decay pion yield 2.S/N ratio 3. method of momentum calibration 4. momentum resolution 5. method of particle ID

yield & S/N 1. decay pion yield π - (139.2 MeV/c) → βγc τ ~ 7.4 mshort path length large solid angle acceptance 2. S/N main back ground component scattered electron muon from pion decay pion from quasi free Lambda & Sigma decay cherenkov counter or dE/dx or TOF locate spectrometer behind of target Λ target π Λ π e - beam p p boost forwarduniform

Stop range & time of 4 Λ H ( 12 C target) (MC simulation) Kinetic energy(MeV) Stop time (ns) Kinetic energy(MeV) Target thickness (mg/cm 2 ) Maximum range of 4 Λ H ; within target Maximum stopping time of 4 Λ H ; less than 0.1ns In the case of 10MeV Target thickness (100mg/cm2) Life time (~0.1 ns)

momentum calibration 3. momentum calibration of spectrometer The absolute value of pion momentum must be known (∓30 keV) monochromatic source alpha source near by pion momentum (~130MeV/c) spectrometer focal plane (FP)Vacuum area alpha source position at FP momentum sourceEnergy (MeV) Momentum (MeV/c) 148 Gd Th Po sourceEnergy (MeV) Momentum (MeV/c) 241 Am Cm sourceEnergy (MeV) Momentum (MeV/c) 148 Gd Th Po sourceEnergy (MeV) Momentum (MeV/c) 241 Am Cm (Decide the mass precision) Candidate list of alpha source

Simulation spectrometer ; Enge type magnet magnet field ; TOSCA 1.Yield 2.S/N ratio 3. method of momentum calibration 4. momentum resolution 5. method of particle ID geant4 1.Yield 2.S/N ratio 3. method of momentum calibration 4. momentum resolution 5. method of particle ID

Geant4 simulation target 12 C 100mg/cm 2 Focal Plane (aligned SSD) Drift Chamber (He 50%+ CH4 50%) Vacuum Chamber window Decay pion Enge Magnet Hodoscope 20mm thickness Plan 1 (SSD)Plan 2 (DC)

SSD DC momentum resolution (simulation) detect at SSD (500um pitch) counts detect at DC (He 50% + CH4 50%) momentum (MeV/c) simulate momentum resolution at MeV/c pions SSD DC multiple scattering effect FWHM = 160 keV/cFWHM = 70 keV/c momentum (MeV/c) Materials Vacuum chamber window (Mylar 100 um & Kevlar 200 um) Air (1 cm) DC window (Mylar 12.5 um) DC Gas (He + CH4) simulation

Hodoscope PID (simulation) electron ; reject with water or aerogel cherenkov muon ; not significant background (less than 30% contamination) generate particle ratio : pion : electron = 4 : 1 angle ; ∓2 degree (uniform) momentum ; 85 MeV/c ~ 145 MeV/c (uniform) muon pion Energy deposit (MeV) Counts electron energy deposit at hodoscope (t=20mm) simulation beta beta distribution behind of hodoscope aerogel water lucite muon pion electron simulation

yield stopped (K -,π - ) ; decay π - from 4 Λ H : π - from 12 Λ C ground state formation Progress of Theoretical Physics Supplement No = 3~4 : 1 stopped (K-,π-) ( 12 C target) 200 nb/sr (e,e’K + ) ; decay π - from 4 Λ H : 12 Λ B ground state cross section = 3~4 : 1 Progress in Particle and Nuclear Physics 57 (2006) 564 momentum transfer at 12 C target

yield target ; 12 C (100mg/cm 2 thickness) beam ; 2.3 GeV 50 uA tagging kaon momentum ; 1.2 GeV/c tagging kaon angle ; 6 degree

yield simulation

yield (simulation) conditionparticle ; pion angle ; ∓ 2deg (uniform) momentum ; 85 MeV/c ~ 145MeV/c (uniform) & MeV/c 200 (50,000 count) : 1 (250 count) Expected decay pion spectrum detect at SSD (momentum resolution ~70 keV/c) momentum (MeV/c) counts simulation

summary We will study about the new method of hyper nuclear formation Momentum is calibrated by alpha sources 70 keV/c (SSD) or 160 keV/c (DC) momentum resolution Adopt aerogel or water cherenkov counter to reject the electrons Pion from 4 Λ H is about 250 count/5days Feasibility test in Spring 2012

backup

4 Λ H & 4 Λ He emulsion data in stopped (K -,π - ) G.Bohm et al. Nucl. Phys. B4 (1968) 511

4 Λ H & 4 Λ He Hiyama et al. Phys. Rev. C65 (2002)

4 Λ H & 4 Λ He G.Bohm et al. Nucl. Phys. B4 (1968) 511

4ΛH4ΛH

4 Λ H rate target dependence

5 Λ He & 4 Λ He

Enge J.E.SPENCER and H.A.ENGE NIM 49 (1967) 181

Enge input (raytrace) raytrace ; optical calculation software

experimental setup CEBAF Primary Electron Beam Enge Type Magnet (Enge) Splitter Magnet K+K+ Beam Dump e-’e-’ π-π- make lambda hyper nuclear with (e-,e - ’K + ) reaction emit π- from weak decay of lambda hyper nuclear observe π - momentun at Enge Type Magnet detect K + at HRS to surppress π - from non-strangeness reaction (e.g. Δ formation) HRS

momentum calibration magnetic field value position at forcal plane experimental field value estimate with TOSCA

TOSCA about TOSCA magnetic field calculation software field value accuracy is about can output field value of each cell edge.

simulation TOSCA model is based on CAD file. mean field value is about 0.57 Tesla output field value every 10mm at x, z direction and 2mm at y direction 1 m pole2 pole1 coil yoke entrance exit yoke z x

simulation TOSCA model is based on CAD file. mean field value is about 0.57 Tesla output field value every 10mm at x, z direction and 2mm at y direction 1 m pole2 pole1 coil yoke entrance exit yoke z x

momentum resolution (DC Ar 50% + C2H6 50%) FWHM = 262 keV MeV/c

Mechanism of 4 Λ H Formation Formation via Compound Nucleus Recoil energy K- absorption at rest ~ 40 MeV

alpha observation

position at FP v.s. theta at generate point (geant4) momentum (MeV/c) theta_i (deg) phi_i (deg)

position at FP v.s. theta at generate point (raytrace)

dispersion Ana range (dp±30%)

Geant4 simulation (plan2) target 12 C 100mg/cm 2 Focal Plane (aligned SSD) Enge Magnet Hodoscope 20mm thickness Drift Chamber (He 50%+ CH4 50%) Primary Electron Beam Vacuum Chamber window Splitter Magnet Decay pion Vacuum Area