Computation of High-Resolution Global Ocean Model using Earth Simulator By Norikazu Nakashiki (CRIEPI) Yoshikatsu Yoshida (CRIEPI) Takaki Tsubono (CRIEPI)

Slides:



Advertisements
Similar presentations
Basics of numerical oceanic and coupled modelling Antonio Navarra Istituto Nazionale di Geofisica e Vulcanologia Italy Simon Mason Scripps Institution.
Advertisements

Weather Research & Forecasting: A General Overview
Yoichi Ishikawa 1, Toshiyuki Awaji 1,2, Teiji In 3, Satoshi Nakada 2, Tsuyoshi Wakamatsu 1, Yoshimasa Hiyoshi 1, Yuji Sasaki 1 1 DrC, JAMSTEC 2 Kyoto University.
CORE-II HYCOM Science application and test cases
O AK R IDGE N ATIONAL L ABORATORY U.S. D EPARTMENT OF E NERGY Global Climate Modeling Research John Drake Computational Climate Dynamics Group Computer.
Phil’s Promised Presentation on POP’s Present Progress, Performance and Penultimate Post-present Plan POP People P. Malone, P. Smith, P. Maltrud, P. Jones,
Predictability of Japan / East Sea (JES) System to Uncertain Initial / Lateral Boundary Conditions and Surface Winds LCDR. Chin-Lung Fang LCDR. Chin-Lung.
Low frequency variability of the CCS: effect of the El Nino. X. Capet, J McWilliams, A. Shchepetkin (UCLA) Eastern Pacific Ocean Conference 2004.
A Coupled Ice-Ocean Model Based on ROMS/TOMS 2.0 W. Paul Budgell Institute of Marine Research and Bjerknes Centre for Climate Research Bergen, Norway Terrain-Following.
2005 ROMS Users Meeting Monday, October 24, 2005 Coupled sea-ice/ocean numerical simulations of the Bering Sea for the period 1996-present Enrique Curchitser.
Vertical Mixing Parameterizations and their effects on the skill of Baroclinic Tidal Modeling Robin Robertson Lamont-Doherty Earth Observatory of Columbia.
COLLABORATORS: P. Estrade, S. Herbette, C. Lett, A. Peliz, C. Roy, B. Sow, C. Roy EDDY-DRIVEN DISPERSION IN COASTAL UPWELLING SYSTEMS California Canary.
A Regional Ice-Ocean Simulation Of the Barents and Kara Seas W. Paul Budgell Institute of Marine Research and Bjerknes Centre for Climate Research Bergen,
1 NGGPS Dynamic Core Requirements Workshop NCEP Future Global Model Requirements and Discussion Mark Iredell, Global Modeling and EMC August 4, 2014.
The Role of Surface Freshwater Flux Boundary Conditions in Arctic Ocean/Sea-Ice Models EGU General Assembly, Nice, April 2004 Matthias Prange and Rüdiger.
Coupled GCM The Challenges of linking the atmosphere and ocean circulation.
Hal Gordon CSIRO Atmospheric Research, Aspendale, Australia CSIRO Mk3 Climate Model: Tropical Aspects.
WRF-VIC: The Flux Coupling Approach L. Ruby Leung Pacific Northwest National Laboratory BioEarth Project Kickoff Meeting April 11-12, 2011 Pullman, WA.
The Louvain-la-Neuve sea ice model : current status and ongoing developments T. Fichefet, Y. Aksenov, S. Bouillon, A. de Montety, L. Girard, H. Goosse,
Fixed Vertical Coordinates POM SWAFS NCOM POP Lagrangian Vertical Coordinate NLOM Hybrid Vertical Coordinate HYCOM Lagrangian Vertical Coordinate.
Intrinsic Errors in Physical Ocean Climate Models Matthew Hecht Los Alamos National Laboratory.
1.Introduction 2.Description of model 3.Experimental design 4.Ocean ciruculation on an aquaplanet represented in the model depth latitude depth latitude.
Comparison of Different Approaches NCAR Earth System Laboratory National Center for Atmospheric Research NCAR is Sponsored by NSF and this work is partially.
Dale haidvogel Nested Modeling Studies on the Northeast U.S. Continental Shelves Dale B. Haidvogel John Wilkin, Katja Fennel, Hernan.
Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-premitting resolution Barnier Bernard et al.
Developments within FOAM Adrian Hines, Dave Storkey, Rosa Barciela, John Stark, Matt Martin IGST, 16 Nov 2005.
The Gent-McWilliams parameterization of ocean eddies in climate models Peter Gent National Center for Atmospheric Research.
ROMS in Alaska Waters Kate Hedstrom, ARSC/UAF Enrique Curchitser, IMCS/Rutgers August, 2007.
The Linear and Non-linear Evolution Mechanism of Mesoscale Vortex Disturbances in Winter Over Western Japan Sea Yasumitsu MAEJIMA and Keita IGA (Ocean.
The dynamic-thermodynamic sea ice module in the Bergen Climate Model Helge Drange and Mats Bentsen Nansen Environmental and Remote Sensing Center Bjerknes.
High performance parallel computing of climate models towards the Earth Simulator --- computing science activities at CRIEPI --- Yoshikatsu Yoshida and.
Ocean modelling activities in Japan (some of activities in China and Korea are included in the report) report to the CLIVAR Working Group for Ocean Model.
First results from the isopycnic ocean carbon cycle model HAMOCC & MICOM/BCM Karen Assmann, Christoph Heinze, Mats Bentsen, Helge Drange Bjerknes Centre.
“Very high resolution global ocean and Arctic ocean-ice models being developed for climate study” by Albert Semtner Extremely high resolution is required.
The Northwest Corner of the Atlantic and Rapid Climate Change Matthew Hecht with Frank Bryan, Rick Smith, Mathew Maltrud and contributions from others.
Analysis of four decadal simulations of the Skagerrak mesoscale circulation using two ocean models Lars Petter Røed 1 and Jon Albretsen 2 Presented at.
Summary Report Lecturer: Chia-Ping Chiang Date: 2009/Jun/25.
The GEOS-5 AOGCM List of co-authors Yury Vikhliaev Max Suarez Michele Rienecker Jelena Marshak, Bin Zhao, Robin Kovack, Yehui Chang, Jossy Jacob, Larry.
Changes to the KPP Vertical Mixing Parameterization
Oceans and climate: an OCCAM perspective Andrew C. Coward 1 Large Scale modelling team James Rennell Division for Ocean Circulation and Climate Southampton.
A Brief Introduction to CRU, GHCN, NCEP2, CAM3.5 Yi-Chih Huang.
High Resolution Global Ocean Model
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
Ocean Climate Simulations with Uncoupled HYCOM and Fully Coupled CCSM3/HYCOM Jianjun Yin and Eric Chassignet Center for Ocean-Atmospheric Prediction Studies.
By S.-K. Lee (CIMAS/UM), D. Enfield (AOML/NOAA), C. Wang (AOML/NOAA), and G. Halliwell Jr. (RSMAS/UM) Objectives: (1)To assess the appropriateness of commonly.
A QUASI-GLOBAL CONFIGURATION OF ROMS (OR, TOWARDS GOMS?) Guillermo Auad & Art Miller (CRD/SIO) Grid features : ● zonal resolution: 0.8º (fixed); meridional.
Tolman, Jan. 15, NCEP 1/17 Ocean modeling at NCEP Hendrik L. Tolman NOAA / NWS / NCEP / EMC Marine Modeling and Analysis Branch
Module 6 MM5: Overview William J. Gutowski, Jr. Iowa State University.
Assessment of the ECCO2 optimized solution in the Arctic An T. Nguyen, R. Kwok, D. Menemenlis JPL/Caltech ECCO-2 Team Meeting, MIT Sep 23-24, 2008.
High-Resolution Ocean and Ice Models for Forecasting and Climate Projection Albert J. Semtner Naval Postgraduate School, Monterey, CA 93943, USA This talk.
Interannual to decadal variability of circulation in the northern Japan/East Sea, Dmitry Stepanov 1, Victoriia Stepanova 1 and Anatoly Gusev.
Nansen Environmental and Remote Sensing Center Modifications of the MICOM version used in the Bergen Climate Model Mats Bentsen and Helge Drange Nansen.
Visualization of High Resolution Ocean Model Fields Peter Braccio (MBARI/NPS) Julie McClean (NPS) Joint NPS/NAVOCEANO Scientific Visualization Workshop.
Matthew J. Hoffman CEAFM/Burgers Symposium May 8, 2009 Johns Hopkins University Courtesy NOAA/AVHRR Courtesy NASA Earth Observatory.
Tropical Atlantic SST in coupled models; sensitivity to vertical mixing Wilco Hazeleger Rein Haarsma KNMI Oceanographic Research The Netherlands.
15 Annual AOMIP Meeting. WHOI, 1- 4 November 2011 Numerical modeling of the Atlantic Water distribution in the upper Arctic Ocean: Sensitivity studies.
The effect of tides on the hydrophysical fields in the NEMO-shelf Arctic Ocean model. Maria Luneva National Oceanography Centre, Liverpool 2011 AOMIP meeting.
Numerical modeling of Atlantic and Pacific waters dynamics Elena Golubeva Institute of Computational Mathematics and Mathematical Geophysics Siberian Branch.
AO-FVCOM Development: A System Nested with Global Ocean Models Changsheng Chen University of Massachusetts School of Marine Science, USA
Gent-McWilliams parameterization: 20/20 Hindsight Peter R. Gent Senior Scientist National Center for Atmospheric Research.
Impacts of Vertical Momentum Mixing in an Arctic Ocean Model Youyu Lu 1, Greg Holloway 2, Ji Lei 1 1 Bedford Institute of Oceanography 2 Institute of Ocean.
Coupling ROMS and CSIM in the Okhotsk Sea Rebecca Zanzig University of Washington November 7, 2006.
Overview of the CCSM CCSM Software Engineering Group June
Z. Garraffo, G.Halliwell, L. Smith, G. Peng, E. Chassignet
A Brief Introduction to CRU, GHCN, NCEP2, CAM3.5
지구온난화에 의한 북서태평양에서의 상세 해수면 상승 예측(I) - 해수팽창을 고려한 지역해양순환모형의 규모축소 모의 실험 -
Mark A. Bourassa and Qi Shi
HiGEM Ocean Surface boundary condition Freshwater balance
Joint Proposal to WGOMD for a community ocean model experiment
  Robin Robertson Lamont-Doherty Earth Observatory
Presentation transcript:

Computation of High-Resolution Global Ocean Model using Earth Simulator By Norikazu Nakashiki (CRIEPI) Yoshikatsu Yoshida (CRIEPI) Takaki Tsubono (CRIEPI) Dong-Hoon. Kim (CRIEPI) Frank O. Bryan (NCAR) Richard D. Smith (LANL) Mathew E. Maltrud (LANL) Julie L. McClean (NPS)

Parallel Ocean Program (POP) 1.Designed for Massive Parallel Computer -> sheared memory, massive parallel computing 2. Free-surface boundary condition -> no island problem -> unsmoothed bottom topography -> prognostic sea-surface height 3. General Orthogonal Coordinate -> displaced-pole grid (singularity free Arctic Ocean) 4. Vertical mixing parameterization 1) simple constant mixing 2) Richardson-number dependent mixing 3) KPP mixing parameterization

5. Convective Adjustment 1) convection adjustment 2) large mixing coefficient 6. Horizontal mixing 1) laplacian 2) bi-harmonic 3) Gent-McWilliams isopycnal tracer diffusion 4) Anisotropic viscosity 7. Equation of State 1) UNESCO eq. (based on potential temperature) 2) full UNESCO eq. (polynomial fit) 3) linear eos 8. Topographic stress 1) Holloway’s topographic stress parameterization

POP (Parallel Ocean Program) 1)High Resolution Global Ocean model Resolution : 0.1x0.1x40L ( 3600x2400x40) (pole on North America) Horizontal : Bi-harmonic Mixing for Momentum & Tracer Vertical : Kpp Mixing Time step : 220/day ( ≒ 6min.) 2) Global Model for CCSM2 Resolution : 1x1x40L ( 320x384x40) (pole on Green Land) Horizontal : Anisotropic Mixing for Momentum GM Mixing for Tracer Vertical : Kpp Mixing Time step : 23/day ( ≒ 60min.)

Computational Grid of POP x0.1 Horizontal Mesh Vertical Mesh

POP timing measurement on ES 1 degree model –320 x 384 x 40 grid division, 23 full-step/day –KPP vertical mixing scheme –GM horizontal mixing for tracer –Anisotropic viscosity parameterization –3rd upwind tracer advection 0.1 degree model –3600 x 2400 x 40 grid division, 220 full-step/day –KPP vertical mixing scheme –Bi-harmonic horizontal mixing for tracer and momentum No history output. No forcing data input.

w/o optimization w/ optimization (a) 20 PEs (b) 160 PEs (c) 960 PEs baroclinic barotropic baroclinic barotropic Cost distribution in POP resolution: x0.1 deg

Scalability in baroclinic/barotropic mode Significant improvement in barotropic mode Scalability wall around 2-node (1 deg) and 80-node (0.1 deg) Slight speedup in baroclinic mode (a) 1 degree(b) 0.1 degree

POP performance on ES 1.64 day/century,70.2 Gflop/s,at 1 degree (4 nodes) 27.1 day/century,1.60 Tflop/s,at 0.1 degree (120 nodes) (a) wallclock v.s. # of PEs(b) efficiency v.s. # of PEs

Parallel Efficiency of POP x1 (Relation with Vertical Resolution) Parallel efficiency ≧ 50 % (10 Node ) on ES center Num. of PE Wall Clock Time (sec) for 2 Days Integration Parallel Efficiency (%) Vertical Resolution -> 40L, 80, 160, 200L

Further optimizations for POP code POP version 1 –Distributed parallel I/O w/ horizontal data decomposition (J. Ueno, will be completed in March) –Tests of NEC’s new MPI library (incl. all-reduce) –Merge CRIEPI version and CRAY version into one POP version 2 –POP2 beta2 code ported to ES –Vector optimization –Timing measurement in progress (H. Komatsu, J. Ueno) Some problems w/ OpenMP NEC’s compiler supports OpenMP1.1, not OpenMP2 Some features of f90 cannot be used w/ OpenMP1.1

10 years Spin up of POP (x0.1) 10 year Computation (10year * 1cycle) Initial data From LANL/NPS Earth Simulator 40 node (320 PE) Atmospheric Boundary Conditions NCEP, etc. ( ) (1) Wind Daily (2) Surface Heat Flux Daily (3) Surface Fresh Water Flux Monthly POP x0.1 Surface Boundary Condition

Global Diagnostics Kinetic Energy at Surface Global Mean KE Global Mean PTGlobal Mean SAL

Annual Mean Sea Surface Temp.

Annual Mean Sea Surface Sal. Levitus POP x1 (2000) POP x0.1 m(2000)

Kuroshio CCSM2 (for climate simulation) X1 deg. (100km×100km) High Resolution Model x0.1 deg. (10km× 1 0km)

CCSM2 (for climate simulation) X1 deg. (100km×100km) High Resolution Model x0.1 deg. (10km× 1 0km) Equatorial Current

Sea Surface Temp. Glonbal Monthly SST Daily SST Kuroshio Gulf Stream Monthly Vel.

Kuroshio Ohsumi Tsushima Tsugaru Soya Tokara SSH & Volume Transport Section

Izu Sv Tokara 13 Sv Soya 0.7Sv Tsugaru 1.5Sv Tsushima 2.2Sv Japan Sea Kuroshio Volume Transport

Sensitivity Analysis of POP x0.1 To improve Gulf Stream & Kuroshio, etc. → Change Strength of Horizontal Mixing Viscosity & Diffusivity of Bi-harmonic Mixing case 01a: am = -2.7e18, ah = -9.0e17 Same Horizontal Mixing (basic) case 01b: x1/2 case 01c: x1/3 Surface Forcing : Monthly Climatology

Global Diagnostics Global Mean KE Global Mean PT Global Mean SAL case 01a Same (basic) case 01b x1/2 case 01c x1/3

SSH case 01a x1/3 9 th, 10 th year 9 th 10 th

SSH case 01c x1/3 9 th, 10 th year 9 th 10 th

Viscosity – SSH (Kuroshio) Global Mean KE - 01a basic - 01b x1/2 - 01c x1/3 x1/2 x1/3 basic Low High

Tsushim a Tsugar u Soy a Es_01a Es_01bEs_01c

(Sv) Tsushima Soya Tsugaru Volume Transport

Tokara

Kuroshio

case_01c year-12, Jan.,Mar.,and May Jan MarMay

New Sections are planning for Volume Transport Checking

case 01a Same (basic) case 01b x1/2 case 01c x1/3 Volume Transport (Kuroshio) Global Mean KE - 01a basic - 01b x1/2 - 01c x1/3

Viscosity – SSH (Gulf Stream) x1/2 x1/3 basic

Sensitivity Analysis of POP x0.1 To improve Gulf Stream, etc. → Change Restoring condition, Topography Viscosity & Diffusivity of Bi-harmonic Mixing case 01e viscosity & diffusivity x1/3 + w/o restoring case 01f viscosity & diffusivity x1/3 + w/ topography change

case 01f w/ topography change

case 01f x1/3 w/ topo. changecase 01e x1/3 w/o restoring SSH at 6 th year

Global Diagnostics Global Mean KE Global Mean PT Global Mean SAL case 01a Same (basic) case 01b x1/2 case 01c x1/3 case 01d GM scheme case 01e x1/3 w/o restoring case 01f x1/3 w/ topo. change

Global Diagnostics Global Mean KE Global Mean PT Global Mean SAL case 20d (basic) case 00a GM mixing With NCEP daily forcing

Future Research Plan 1)POP x0.1 deg. * Improvement of the Model Sensitivity Analysis Horizontal & Vertical Mixing etc. Vertical Resolution 40 Layer -> 106 Layer Active Ice Model 2)POP x1 deg. * Tuning for CCSM2 Computation

Research Plan in FY2003 1)POP x0.1 deg. * Improvement of the Model Sensitivity Analysis : Horizontal & Vertical Mixing etc. Vertical Resolution : 40 Layer -> 106 Layer Active Ice Model ? * Analysis the Results and Write Paper 2)POP x1 deg. * Tuning for CCSM2 Computation 3)Regional Nesting model Porting to ES Center Nesting to POP x1 deg.