Kinematics – describes the motion of object without causes that leaded to the motion We are not interested in details of the object (it can be car, person,

Slides:



Advertisements
Similar presentations
Motion in One Dimension
Advertisements

Motion Along a Straight Line
3-instvelacc Review Three cars are starting on a 30-mile trip. They start at the same time, and arrive ½ hour later. Slow start, then becoming faster Fast.
POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant,
General Physics 1, additional questions, By/ T.A. Eleyan
Chapter 1 and 2 Study Guide for Physics Unit 1 Test
Chapter 2: Kinematics in one Dimension
© 2013 Pearson Education, Inc. Chapter Goal: To learn how to solve problems about motion in a straight line. Chapter 2 Kinematics in One Dimension Slide.
Speed, Velocity and Acceleration
Speed, Velocity and Acceleration
Chapter 2 – MOTION IN ONE DIMENSION
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Motion in One Dimension
Motion in One Dimension
Motion in One Dimension
Motion in One Dimension Unit 1. Lesson 1 : Position, Velocity, and Speed Position : location of a particle with respect to a chosen reference point Displacement.
Chapter 2 Motion in One Dimension. Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used.
1 Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion.
One Dimensional Motion
Chapter 2 Motion in One Dimension. Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other.
قسم الفيزياء - فيزياء عامة 1 - كلية التربية بالجبيل - جامعة الدمام د. غادة عميرة Motion in One Dimension.
Motion in One Dimension
Motion in One Dimension. The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts Kinematics.
Motion in One Dimension Average Versus Instantaneous.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Acceleration 1D motion with Constant Acceleration Free Fall Lecture 04 (Chap. 2, Sec ) General Physics (PHYS101) Sections 30 and 33 are canceled.
Problems Ch(1-3).
Chapter 2 Motion in One Dimension 2-1 Displacement and Velocity  Motion – takes place over time Object’s change in position is relative to a reference.
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Honors Physics Chapter 3
Kinematics in One Dimension We will focus today on problem- solving. Note: some problems are hard, some are not so hard. Part of the learning is recognizing.
Motion in 1D. Forces  Remember that an imbalance in forces results in an acceleration  If all forces are balanced we get a constant velocity  Because.
Ch. 2: Describing Motion: Kinematics in One Dimension.
Chapter 3 Acceleration Lecture 1
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now,
Chapter 2 Motion Along a Line. Position & Displacement Speed & Velocity Acceleration Describing motion in 1D Free Fall.
Chapter 2 Motion in One Dimension. Kinematics In kinematics, you are interested in the description of motion Not concerned with the cause of the motion.
Motion. Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector.
Accelerated Motion Merrill Physics Principles and Problems.
Chapter 2: Kinematics in one Dimension Displacement Velocity Acceleration HW2: Chap. 2: pb.3,pb.8,pb.12,pb.22,pb.27,pb.29,pb.46 DUE on Wednesday, Sept.
Chapter 2 Motion Along a Line. MFMcGraw- PHY 1410Ch_02b-Revised 5/31/20102 Motion Along a Line Position & Displacement Speed & Velocity Acceleration Describing.
Raymond A. Serway Chris Vuille Chapter Two Motion in One Dimension.
1 Chapter 2 Motion F. Morales. 2 CHAPTER OUTLINE  Motion Motion  Vectors Vectors  History of Motion History of Motion  Speed & Velocity Speed & Velocity.
Kinematics in Two Dimensions AP Physics 1. Cartesian Coordinates When we describe motion, we commonly use the Cartesian plane in order to identify an.
Representing Motion. Motion We are looking to ____________and ____________an object in motion. Three “rules” we will follow: –The motion is in a __________________.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
MOTION IN ONE DIMENSION AVERAGE / INSTANTANEOUS SPEED POSITION AND DISPLACEMENT AVERAGE / INSTANTANEOUS VELOCITY AVERAGE / INSTANTANEOUS ACCELERATION.
Motion in One Dimension Physics 2053 Lecture Notes 02a dx dt x t Kinematics in One Dimension (Phy 2053) vittitoe.
Chapter 2: Motion in One Dimension Introduction  The study of motion and of physical concept such as force and mass is called dynamics.  The part of.
Chapter 3 Accelerated Motion. Introduction In this chapter we will examine acceleration and define it in terms of velocity. We will also solve problems.
Position, Velocity, Acceleration Motion Notes. Where am I ? (Position) Everything is located at a position in space X (m) (position in meters) To be consistent.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
Motion Along a Straight Line Chapter 3. Position, Displacement, and Average Velocity Kinematics is the classification and comparison of motions For this.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
1 Physics Chapter 2 Motion in One Dimension Topics:Displacement & Velocity Acceleration Falling Objects.
Chapter 2 Motion in ONE dimension. Displacement This chapter we are only doing to study motion in one direction. This chapter we are only doing to study.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts Kinematics is a part.
Motion.
Motion in One Dimension
Introduction & Rectilinear Kinematics:
Mechanics: Motion in One Dimension x dx Notes by: Ted Vittitoe
Chap. 2: Kinematics in one Dimension
Describing Motion: Kinematics in One Dimension
Section 1 Displacement and Velocity
Chapter 2 Table of Contents Section 1 Displacement and Velocity
Motion in One Dimension
Section 1 Displacement and Velocity
One Dimensional Motion
Presentation transcript:

Kinematics – describes the motion of object without causes that leaded to the motion We are not interested in details of the object (it can be car, person, box etc..). We treat it as a point We want to describe position of the object with respect to time – we want to know position at any given time Path (trajectory) – imaginary line along which the object moves

x t

Motion along a straight line We will always try to set up our reference frame in a such way that motion is along or “x” or “y” coordinate axis. The direction of the axis is up to us. Position vector then can be represented by a single component, the other components are equal to zero. Very often I will write rn instead of r(tn), the same for the components of the vector, for example, yn instead of y(tn) x y t=t1 t=t2 t=t3 r(t1) x1=19m,t1=1s r(t2) x2=277m,t1=4s r(t3)

Motion along a straight line x component of a displacement vector – for time interval t1 t2 is equal Dx=x2-x1 Note that we can define another reference frame, position vector will be different in each frame, not a displacement vector (it will have different components) x’ y’ x y r’1 r’2 r(t1) r(t2)

So we can define change in time Dt=t2-t1 – or in other words a time interval during which Dx occurs. We will define x-component of an object’s average velocity = Dx/Dt=(x2-x1)/(t2-t1)=vav. X Units - m/s X-component of the velocity is equal to a slope of a line in x-t plane that passes through points (x1,t1) and (x2,t2) X (m) t (sec) Dx Dt

Average speed=distance traveled / time interval – positive quantity The value of x-component of an average velocity is defined for given interval. Note, since x-component of the displacement can be positive (motion in +x) or negative (motion in -x), x-component of an average velocity can be positive or negative. Note that if you start at x1=x2 then x-component of average velocity for given time interval is equal to zero. Average speed=distance traveled / time interval – positive quantity X (m) t (sec) Two time intervals Motion in positive x direction Motion in negative x-direction Distance is equal to sum of both

Example: Figure shows the position of a moving object as a function of time. (a) find the average velocity of this object from points A to B, B to C and A to C. (b) is the average speed for intervals given in (a) will be less than, equal, or greater than the values found in part (a). x(m) t (s) A B C

Example: Each graph in figure shows the position of a running cat called Mousie, as a function of time. In each case, sketch a clear qualitative (no numbers) graph of Mousie’s velocity as a function of time. X(m) t(s)

Case we have more curves that describes motion several objects x Points were graphs cross each other – place and time where both meet each other t

Instantaneous velocity Average velocity as everything that is average does not give us chance to find out how was the object moving at any given time of the time interval. Instead we define (x-component) an instantaneous velocity, decreasing time interval. The same way we can define an instantaneous speed. Note: we can always make the time interval small enough so distance traveled during Dt is equal to |Dx| (motion along straight line). Instantaneous speed is a magnitude of instantaneous velocity

We see that instantaneous velocity is slope of a tangent at point t1 X (m) t (sec) We see that instantaneous velocity is slope of a tangent at point t1

X (m) t (sec) Zero slope - stopped Slope is increasing – speeding up, since motion in positive x Slope is decreasing, motion in negative direction, object speeding up Slope is zero – instant stop Slope decreasing – slowing down, since motion in positive x Positive slope

Average acceleration Suppose that I have a particle that was moving somehow and I know that x-component of instantaneous velocity is given as vx(t). We want to know how much it changed during time interval Dt=t2-t1, Dv=vx2-vx1 X-component of an average acceleration of the particle is equal to aav x=Dv/Dt UNITS: meters/sec2=m/s2 We are getting average acceleration from instantaneous velocity, remember it is a vector. In our case we are considering only x-component of it. And can be positive or negative

t1 t2 v (m/s) t (sec) x-component of average acceleration in time interval Dt is a slope of the straight line that passes through 2 points of vx vs t curve Dvx=vx2-vx1 Dt

t1 t2 v (m/s) t (sec) We see that instantaneous acceleration is slope of a tangent to vx(t) curveat point t1 Reducing time interval we can define an instantaneous acceleration

Special cases Object is not moving: x t vx t x0 Object is moving with constant velocity – means slope to x(t) curve is constant – means it is again a straight line: x t x0 vx t vx0 Motion with constant velocity differs from motion with constant speed. The words constant velocity locks magnitude and direction – means object is moving along straight line

Area of shaded rectangular region is equal to vx0(t2-t1)=vx0Dt =Dx x2-x1=Dx=vav-xDt=vx0Dt vx t vx0 x1 t1 t2 t1 t2 Area of shaded rectangular region is equal to vx0(t2-t1)=vx0Dt =Dx Area of a region created by vx(t) curve, t=t1, t=t2 and vx=0 is equal to x-component of displacement.

Motion with constant acceleration Instantaneous and average acceleration are equal x-component of velocity is given: vx(t)=v0x+ax t One can see that at time t=0 vx=v0x We know that displacement is equal to area bound by velocity versus time, t=t1, t=t2 and vx=0 lines – trapezoid. Height =h= t2-t1 two parallel sides: side1=v0x+a t1 and side2=v0x+a t2 We can set t1=0 and write x1 as x0, indicating that position at t=0 Expression for x-component of the position vector, when x0, t, v0x, ax are given Expression for x-components, when x0 ,t, v0x, vx are given (acceleration is not given) Expression for x-components, when x2 –x1, v1x, v2x,,ax are given. (time is not given)

Example: According to recent data, a Ford Focus travels 0. 25mi in 19 Example: According to recent data, a Ford Focus travels 0.25mi in 19.9s, starting from rest. The same car, when braking from 60mph on dry pavement, stops in 146ft. (a) Find this car’s acceleration and deceleration, (b) assuming constant acceleration find its velocity after 0.25mi.

Freely falling objects In this section we will consider constant acceleration due to gravity. Magnitude of the acceleration we will denote as g=9.8m/s2 (for Earth) Acceleration due to gravity is a vector pointing toward the center of the (in our case Earth) we can choose our reference frame with y-axis pointing up – then y-component of the acceleration is equal to –g. We can use all equations for constant acceleration with ay=-g. Special case when you throw object upward, how high does it get?

Example: If we throw a ball upward with initial velocity v0y=5m/s, find: how high does it go, how long does it take to get there velocity of the ball when it is on its way back time required to return back Example: Measuring depth of a deep well To measure the depth of the well you drop a rock and start your stopwatch. Find the depth of the well if after 3s you hear hitting sound coming from a bottom of the well. Ignore finite speed of a sound.

Example: Two rockets start from rest and accelerate to the same final speed, but one has twice the acceleration of the other. (a) If the high-acceleration rocket takes 50s to reach the final speed, how long will it take the other rocket to reach that speed. (b) If the high acceleration rocket travels 250m to reach its final speed, how far will the other rocket travel to do likewise?