Laser/cavity R&D for a polarised positron source

Slides:



Advertisements
Similar presentations
Name (Lab)Presentation title (Place, date) 1 IN2P3 Les deux infinis Optical cavity Revue ThomX mécanique (25/01/2011) Optical cavity Yann Peinaud & Mickael.
Advertisements

Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
~1m undulator IP Pol. e + source based on Compton scattering with FEL & 4 mirror cavity Low energy electron beam Gamma-ray FEL photon beam LCWS2014 in.
A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
Compton Experiment at the ATF Update since TILC09 Positron Workshop Durham 28-October-2009 Junji Urakawa instead of T.Takahashi KEK for collaborators.
Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay Japanese Labs. : KEK, ATF.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
High finesse multi-mirror optical cavities with feedback 1.Fabry-Perot cavity in cw mode: feedback & optical issues 1.Comparison with Sapphire parameters.
Overview of enhancement cavity work at LAL/Orsay  INTRO:  Optical cavity developments at LAL  Results on optical cavity in picosecond regime  Polarised.
Status of g ray generation at KEK-ATF ► Introduction ► Status of the cavity R&D ► Out Look French Labs. : LAL (Orsay) in Collaboration with CELIA (Laser.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
Installation of a Four-mirror Fabry-Perot cavity at ATF 1.Our setup/goal 2.Why 4 mirrors ? 3.The ATF 4-mirror cavity 4.The optical scheme 5.The laser/cavity.
Experimental Effort for Alternative Schemes Experimental Effort for Alternative Schemes Hirotaka Shimizu Hiroshima University ILC2007 at DESY Hamburg.
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
1 Fabry-Perot cavity & pulsed laser J. Bonis, V. Brisson, J.N. Cayla, R. Chiche, R. Cizeron, J. Colin, Y. Fedala, G. Guilhem, M. Jacquet-Lemire, D. Jehanno,
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Feedback R&D for Optical Cavity Ryuta TANAKA (Hiroshima univ.) 19 th Feb 2013 SAPPHiRE DAY.
T.Takahashi Hiroshima γγ state of the art and research plan, what system tests can be done at ATF2, ESA T.Takahashi Hiroshima Univ. March GDE BDS/ACFA.
1 st October Linear Collider workshop The CLIC/ILC common work plan progress J. Clarke and L. Rinolfi.
Fabry-Perot cavity in pulsed regime & Polarimetry Polarimetry related work Optical cavity related work Upsala, Zomer.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
11/18/2008 Global Design Effort 1 Summary for Gamma-Gamma Mayda M. Velasco Northwestern University November 20, 2008 LCWS08 -- UIC, Chicago.
Status and Plan of Compton  -ray Generation at KEK-ATF Japanese Labs. : KEK, ATF group, Hiroshima University Tsunehiko OMORI (KEK) for 13 February 2014.
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
Compton Experiment at ATF LCWS10 28-March-2010 T. Takahashi (Hiroshima) / T. Omori (KEK) for collaborators.
Study of High Intensity Multi-Bunch  -ray Generation by Compton Scattering ATF TB 28/May/2006 presented by Tsunehiko OMORI (KEK) on behalf.
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
T.Takahashi Hiroshima Optical Cavity R&D for Photon Colliders T.Takahashi Hiroshima Univ. 26 May 2008 NanoBeam 2008.
T.Takahashi Hiroshima Optical Cavity R&D around KEK-ATF T.Takahashi Hiroshima Univ. Nov LCWS08 at Chicago.
Laser system for ILC diagnostics Sudhir Dixit: The John Adams Institute (Oxford)
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
T.Takahashi Hiroshima Photon Collider testbed at ATF2 ~a possible plan~ T.Takahashi Hiroshima Univ. May ATF2 meeting.
Status of the Compton Experiment at the ATF TILC09 18-April-2009 T.Takahashi Hiroshima University for collaborators.
Compton Experiment at ATF DR 2009 Summary and Plan ATF2 Project Meeting 15-Dec-2009 T. Omori (KEK) for collaborators.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
50 mJ / pulse, waist = 10  m, 178.5MHz laser beam e- beam 0.11 mJ / pulse, waist = 30  m, 357MHz Where we are with lasers performance for polarized e.
Photon beam generation at PERLE
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
Laser source for PLC Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Laser Request for PLC 2.Technical solutions  Non linear.
Laser source for ThomX Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Interest for Compton scattering 2.Laser beam for ThomX.
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Big progress During R&D.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
Optical Cavity construction at LAL  2000 : polarimeter at HERA 2-mirror cavity cw ND:YAG laser, F=30000 (  ~ )  2005 : Ti:sapph pulsed laser.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
Update of R&D Optical Cvities at KEK-ATF ►Introduction ►Status of the cavity R&D ►Recent activities ►Out Look KEK, Hiroshima University LAL (Orsay) in.
THE COMPACT X-RAY SOURCE THOMX The machine Applications Some technical issues (optics)
Laser electron beam x 30 Multi-Compton chamber system γ-ray cm Conceptual design in 2005 Snowmass X 5 at present Good progress During R&D From Conventional.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Fabry-Perot cavity R&D at Orsay
Fabry-Perot cavity R&D at Orsay Alessandro Variola for the PLIC group LAL ORSAY CERN - CLIC workshop.
R&D description Schedule
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Goals Technical solution  Fabry-Perot optical resonator
Photon beam generation at PERLE
High power high energy ultrafast fiber amplifiers
Laserwire: high resolution non-invasive beam profiling
IRIDE: The Photon Machine
Conveners: L.Serafini,F. Villa
Pol. positron generation scheme for ILC
Compton effect and ThomX What possible future?
Summary for the Sources working group
Development of Optical Resonant Cavities for laser-Compton Scattering
with contributions from
Pierre Favier Laboratoire de l’Accélérateur Linéaire
DANE Compton ring for ultra high flux photons in the 100 KeV-10 MeV energy range D. Alesini (LNF, INFN Frascati)
High finesse cavity for Polarised Positron Source on ILC.
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Presentation transcript:

Laser/cavity R&D for a polarised positron source Collaborating Institutes: Hiroshima, KEK, LAL Outline Introduction Goal of the R&D Status Futur

Optical resonator required to reach high average pulsed laser power Goal(s) of the R&D Former goal : Compton based polarised positron source for ILC  now a generic R&D on high flux [monchromatic] soft X-rays source  e.g. production of 78keV X-rays for radiotherapy for brain cancer (glioblastom) Up to 300 MHz 300 MHz Up to300 MHz Optical resonator required to reach high average pulsed laser power T. Omori

Introduction : e+ polarised source for the ILC The original idea : the KEK scheme K. Moenig idea to modify the KEK scheme ILC beam = trains of~3000 bunchs AND Train frequency =5Hz 100ms to create & 100ms to cool the polarised e+

1-3nc/bunches… R&D at Cornell & KEK ERL scheme for the e+ polarised source (proposed by A. Variola) 1-3nc/bunches… R&D at Cornell & KEK 10 of 600mJ Optical Cavities Kuriki-san 0.6J/pulse@1ps@60MHz  <P>=36MW !!! For 1 cavity  R&D ! (KEK, LAL)

Laser/cavity R&D to reach 600mJ/pulse@~100 MHz Electron beam 1ps Pulsed laser Fabry-Perot cavity with Super mirrors R&D tasks on Fabry-Perot in 1ps pulsed regime: Accelerator implementation & operations Max. power gain (=enhancement factor) achievable [published : gain 200/120fs in 2007 & gain 6000/30ps at SLAC] Minimisation of laser beam spot size to optimize Compton X-section

Complementary R/D in LAL and in KEK R/D in LAL Very High Enhancement ~ 20000-100000 R/D in KEK Moderate Enhancement ~ 1000

Complementary R/D in LAL and in KEK R/D in LAL Very High Enhancement ~ 20000-100000 Small spot size ~ 10 micron R/D in KEK Moderate Enhancement ~ 1000 Moderate spot size ~ 30 micron

Complementary R/D in LAL and in KEK R/D in LAL Very High Enhancement ~ 20000 - 100000 Small spot size ~ 10 micron Sofisticated cavity stucture with 4 mirrors R/D in KEK Moderate Enhancement ~ 1000 Moderate spot size ~ 30 micron Simple cavity stucture with two mirrors

Complementary R/D in LAL and in KEK R/D in LAL Very High Enhancement ~ 20000 - 100000 Small spot size ~ 10 micron Sofisticated cavity stucture with 4 mirrors Digital feedback R/D in KEK Moderate Enhancement ~ 1000 Moderate spot size ~ 30 micron Simple cavity stucture with two mirrors Analog feedback

R&D at KEK : Cavity installation on the Accelerator Test Facility (ATF) . ~ 54 m Beam Energy → 1.28GeV Beam Size  → 100μm×10μm Emittance → 1.0x10-9 rad.m 1.0x10-11 rad.m (Ultra Low !!) cavity ~ 30 m (H. Shimizu)

R&D Report in ATF Laser Section Type YAG-VAN (1064nm) Power 10 W Frequency 357 MHz Pulse Width 10 ps Cavity Section Length 420 mm Mirror Reflection Coeff. 99.7 % Beam Waist 60 μm ( in 2σ) Crossing Angle 12 degree

Port for ion pump ATF e-Beam Terminal for piezo Micro-positioning system Laser

Piezo housing e-Beam Mirror housing 12deg. Laser

Status : Cavity received Enhancement ~ 1000 Feedback under studies Installation  automn 2007

R&D at LAL : toward very high power enhancement Difficulty = properties of passive mode locked laser beams Frequency comb  all the comb must be locked to the cavity  Feedback with 2 degrees of freedom : control of the Dilatation & translation T. Udem et al. Nature 416 (2002) 233

Status : Cavity locked (low gain ~1200) R&D setup at LAL/Orsay vacuum cavity 1 W Ti:sa laser 1ps@frep=76MHz Status : Cavity locked (low gain ~1200) Digital feedback (VHDL programming) set up Already Dfrep/frep=10-10  Dfrep=30mHz for frep=76MHz New mirrors in septembre  gains 104-105

R&D at LAL : toward small laser spot size Small laser spot size &2 mirrors cavity  unstable resonator (concentric resonator) e- beam Laser input Stable solution: 4 mirror cavity as in Femto lasers BUT astigmatic & linearly polarised eigen-modes Non-planar 4 mirrors cavity Astigmatism reduced & ~circularly polarised eigenmodes

3D cavity prototype Y. Fedala Cw laser diode in extended cavity config (Littrow configuration) Y. Fedala

3D cavity modes Exp. Higher order Modes Th. results Eigenmodes well described (shape and size) s~10mm spot size achieved (limited by mirror edge diffraction)  mechanical stability measured

4 mirrors cavity design for ATF e- beam tube Vacuum chamber Support beam Support Length 1.5m/2 tube diameter : 420 mm laser injection R. Cizeron

12 moteurs ‘encapsulated’ inside vaccum Spherical mirrors Flat mirror Flat mirror Invar ( Fe-Ni alloy) laser injection 3 Beam supports

Mirrors holders design study motor actuator θy 3 piezos θx & θy Z displacement motor actuator θx Builded & tested at LAL

Futur: toward higher incident laser power Presently the laser average power is 10W at KEK 0.7W at Orsay Laser R&D LAL : 150W average power (1ps@190MHz) Started in june 20072008 Installation at ATK with 4 mirrors cavity KEK & LAL : 150WkW level after 2008

High average power system Femtosecond oscillator Max published Femtosecond oscillator Grating stretcher Compressor Fiber amplifiers F. Röser et al. Optics letters, 30, p2754, 2005 Laser Diode Laser Diode 150 fs, 73 MHz 1W 40/170 40/170 OI Doped photonic fibre : Large core diameter (up to 100mm !!!) & monomode.. Gold grating-based strectcher

 we have to do laser R&D ourselves for high repetition rate and 1ps For most of laser applications : Interests for high peak power, not for high average power and/or femto pulses  we have to do laser R&D ourselves for high repetition rate and 1ps Evolution of continuous wave fibre laser power “4.8kW average power may be (hardly) achieved In the future” [131W today…] Photonic fibre is a very recent promising technology …

Summary R&D on high flux soft X-rays based on Laser-e beam Compton scattering Complementary R&D at KEK & LAL 2 mirrors & moderate enhancement ~1000 installed at ATF/KEK Very high enhancement factor studies at LAL & non planar resonator conception/construction New high average power laser source KEK/LAL R&D started Needed to reach the required X-rays rate ~1-10Mw average power inside cavity expected = 20-200GW peak power =8-80mJ/pulse Would this help for the Photon Linear Collider ? Much more pulse power needed…  non-linear & thermal effects in the mirror coatings ?  huge cavity size

Backslides

Yield Evaluation 1.5x109 electrons/bunch generates 8.2x108 g/collision. 10 collisions make 8.2x109 g/bunch total, 2.4x109 g/bunch in effective energy range. Assuming 0.3% efficiency g for e+ conversion and capture, 7.5x106 e+/bunch is obtained. This bunch train continues 100ms with 6.2ns spacing. # of revolutions of DR(C~6.7km) in 100ms is 4000. Top-up injection up to 4000 bunches in a same bucket make 3.0x1010 e+/bunch. Another 100ms is for damping

Yield Evaluation (2) By E. Bulyak Energy spread after IRs (ERL) (CR)

membrane to support mirror Cardan (gimbal) piezo Ø 1 inch membrane to support mirror 3 piezos at 120°

Sélection de l’énergie du rayonnement Une application médicale à l’ESRF (ligne ID17): radiothérapie pour le traitement des gliomes Pas de traitement pour le ‘glioblastome’ aujourd’hui (& 7 cas/105 par an…) : Idée (cf these S. Corde, J.F. Adam, ESRF) fixer un élément lourd (platine) sur l’ADN cancéreuse puis exciter l’atome par un rayonnement X (78 keV=couche K) pour détruire cette ADN… Sélection de l’énergie du rayonnement

Pourquoi du rayonnement synchrotron ? Pourquoi un élément à grand Z (le platine) Haut flux de X monoénergétiques à 78 keV Parcourt moyen de ces X dans l’eau convenable Minimisation des pertes dans les tissus sains & maximisation de l’effet radiotérapeuthique

Cis-platine + rayons 78keV ESRF (Grenoble) Résultat [MC Biston et al. cancer reas. 64 (2004)2317] Cis-platine + rayons 78keV Source rayons X Monoénergétique nécessaire

Nécessité aussi d’une machine à bas coup Utilisation de l’interaction Compton (e-+laser → e- + photon) Laser pulsé ‘amplifié’ dans une cavité Production de rayons X dont on peut choisir l’énergie (=longueur d’onde) à des flux de puissance tolérables par l’organisme