Review of results on FeSe P Hirschfeld, 9/19 (Data only up to 6/2014) Thanks to: Taka Shibauchi Tetsuo Hanaguri Frederic Hardy (+Anna Boehmer, Christoph.

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA ) K.B. Efetov ( Ruhr-Universitaet,Bochum, Germany) Localization and Critical.
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
The Low-Temperature Specific Heat of Chalcogen- based FeSe J.-Y. Lin, 1 Y. S. Hsieh, 1 D. Chareev, 2 A. N. Vasiliev, 3 Y. Parsons, 4 and H. D. Yang 4 1.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Www-f1.ijs.si/~bonca SNS2007 SENDAI Spectral properties of the t-J- Holstein model in the low-doping limit Spectral properties of the t-J- Holstein model.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
SDW Induced Charge Stripe Structure in FeTe
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Wittenberg 2: Tunneling Spectroscopy
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Mon, 6 Jun 2011 Gabriel Kotliar
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Two Particle Response in Cluster Dynamical Mean Field Theory Rosemary F. Wyse, Aspen Center for Physics, PHY/DMR Dynamical Mean Field Theory is.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Michael Browne 11/26/2007.
An Introduction to Fe-based superconductors
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Igor Lukyanchuk Amiens University
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
ARPES studies of cuprates
‘Tc’ ~ 70 K: Fe-Based SC 200 Tc (K) year
Phase diagram of FeSe by nematic ultrafast dynamics
Toward a Holographic Model of d-wave Superconductors
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Transport property of the iodine doped
Search of a Quantum Critical Point in High Tc Superconductors
Evidence for fully gapped superconductivity from microwave penetration depth measurements in PrFeAsO1-y single crystals K. Hashimoto1, T. Shibauchi1,
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Anisotropic superconducting properties
UC Davis conference on electronic structure, June. 2009
Weiyi Wang, Yanwen Liu, Cheng Zhang, Ping Ai, Faxian Xiu
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Presentation transcript:

Review of results on FeSe P Hirschfeld, 9/19 (Data only up to 6/2014) Thanks to: Taka Shibauchi Tetsuo Hanaguri Frederic Hardy (+Anna Boehmer, Christoph Meingast)

Basic properties N and S states New physics from new crystals

Relatively correlated material Z. P. Yin, K. Haule, & G. Kotliar, Nat. Mat. 10, 932–935 (2011) LDA+DMFT exercise: Fix interactions U,J, vary material

FeSe: nonmagnetic 8K superconductor, but: Medvedev et al 2010: Tc  37K under pressure Burrard ‐ Lucas et al 2012 Tc  43K molecular intercalation S. He et al aXv:: ARPES gap Wang et al. Chin. Phys. Lett layer Tc  35K under tensile strain

Pressure dependence of bulk FeSe Medvedev et al 2010 Bendele et al 2012: magnetic state at low pressure Margadona et al 2010

Pressure enhances spin fluctuations Imai, Cava PRL 2009

But note difference from other systems FeSe Spin fluctuations seem to wait until orthorhombic transition happens

Are the chalcogenides generally more correlated? “Bad metals”? Mizuguchi et al 2011 Morosan et al (Rice group) 2013 Fang et al 2009

A tale of two Fe-chalcogenides Mizuguchi et al 2011 Kasahara et al, unpublished (2014) crystals from A. Böhmer et al., PRB 87, (R) (2013) Bad metal physics not evident in FeSe  (T c )~0.1  cm

High-quality stoichiometric FeSe single crystal A. Böhmer et al., PRB 87, (R) (2013). T c ~ 10 K (cf. ~8 K for typical samples) Large RRR and MR indicate that samples are very clean. S. Kasahara et al., unpublished?

F.-C. Hsu et al., PNAS 105, (2008). S. Kasahara et al., unpublished? How good are new KIT crystals really?  0 = 250  cm at 8K  0 = 10  cm at 10K RRR~6.5 RRR~40 Consistent with (  (T  0) =0)

Electronic specific heat JY Lin et al, PRB 84, (R) (2011) Hardy et al, unpublished old new Old and new very similar – small influence of disorder on SC

SdH (Terashima arXiv: )

SdH

Large orbital ordering in ARPES Nakayama et al. arXiv:

Yi et al PNAS 2011 (0,  )(  0 )(0,  )(  0 ) Signatures of electronic nematicity in FeSC generally ARPES: orbital ordering

Signatures of electronic nematicity in FeSC STM in SC state topography spectrumdefect vortex FeSe: CL Song et al, Science 2011, PRL 2012 a and b are only ~0.1% different! But strong C 4 symmetry breaking in SC state.

Tunneling spectra Low energy spectrum (±6 mV) Multigap SC High energy spectrum (±95 mV)

FT-dI/dV/(I/V) Unidirectional quasi-particle interference 45 nm×45 nm, +50 mV/100 pA T ~ 1.5 K dI/dV/(I/V)Topograph Bragg alias Unidirectional dispersing features in q a and q b directions. a Fe b Fe a Fe b Fe qaqa qbqb Small orthorhombicity yet large anisotropy in the band structure! cf. NaFeAs: E. P. Rosenthal et al., Nat. Phys. 10, 225 (2014). Hanaguri group using KIT crystals

Extremely small E F ~  BCS-BEC crossover regime? QPI Bandstructure (note: over small 1-domain window!) Electron-likeHole-like along q a along q b FT-dI/dV/(I/V) Orthogonal electron- and hole-like dispersions B = 12 T imp.     EFEF EFEF

Orbital character changes when we go around the FS pockets. If only intra-orbital scatterings are allowed, QPI patterns may be unidirectional. Why one of the orbitals is active? Orbital order? Possible intra-orbital scattering S. Graser et al., New J. Phys. 11, (2009). Can we reproduce orthogonal electron and hole dispersions using the orbital-order model?

Lifting the orbital degeneracy Band calc. (by Dr. H. Ikeda) Orbital character Orthorhombic distortion only E yz -E xz = 0.05 eV E yz -E xz = 0.1 eV Orthorhombic distortion alone cannot explain the unidrectional dispersions. Orthorhomicity is not a player but a spectator. Orbital order? More detailed calculations are indispensable…

Penetration depth and thermal conductivity results

Introduction: FeSe x Can-Li Song, et al., Science (2010). Nodal superconductivity MBE-STM Defect-free stoichiometric films Nodeless multiple gaps Specific heat Thermal Conductivity J.K. Dong, et al., PRB (2009). J.-Y.Lin, et al., PRB (2011). Single crystals (off-stoichiometry) Superconducting gap symmetry ---- A key for the mechanism The simplest structure F.C. Hsu, et al., PNAS (2008). Strong correlation

Magnetic field penetration depth Quasi T-linear at T/T c < 0.2 T * imp ~ 2 K Finite qusiparticle excitation at low temperatures No Curie term (No excess irons) cf) clean YBCO Large temperature dependence Presence of line nodes  ~T 1.4

Thermal conductivity in a stoichiometric FeSe single crystal Wiedemann-Franz law  n /T=L 0 /  0 ~ 1.43 (W/K 2 m) ~ 30-40% of the normal state value n/Tn/T  0 ~ 1.70  cm  0 n /T ~ 1.06 (W/K 2 m)  0 ~ 2.30  cm Strong evidence for the line nodes Increase of the quasiparticle life time below T c Large residual value TcTc  0 /T=L 0 /  0 L 0 : Lorentz number  0 /T~ 0.4 (W/K 2 m)

Discussion: Origin of the different behavior    Nodes can be removed   Accidental nodes   Quasi T-linear (T) Finite residual   /T Negligibly small   /T at 0 T Present study (Clean single crystals) Earlier study (Dirty crystals) Nodeless (Anisotropic s-wave) Nodal Superconductivity Gap anisotropy is smeared by strong scattering J.K. Dong, et al., PRB (2009). Nodal s-wave state in FeSe

Discussion: Origin of the different behavior V. Mishra et al., PRB, 80, (2009).    Accidental nodes  ~  coherence length ~ 5 nm l: mean free path ~ 200 nm Slope parameter of gap at nodes 1/  ~ node Magnitude of the residual term 2-band model Nodes are nearly vanishing Present results   Nodes can be removed  Gap anisotropy is smeared by strong scattering    Nodal s-wave state in FeSe Inconsistent with d-wave

Anomalous field dependence of thermal conductivity Long QP mean free path l QP 00 FeSe Strong reduction of  /T at low fields Plateau at high fields  e l /T ~ N(E F )v F l N(E)~ H 1/2 Doppler shift Different from ordinal behaviors

Anomalous field dependence of thermal conductivity CeCoIn 5 Y. Kasahara et al., PRB, 72, (2005). Long QP mean free path l QP N(E)~ H 1/2 l ~ H -1/2 Long m.f.p. & vortex scattering 00 FeSe Strong reduction of  /T at low fields Plateau at high fields  e l /T ~ N(E F )v F l Doppler shift Cancelation  Plateau ① Vortex scattering due to long mean free path (a v ~ H -1/2 )

Anomalous field dependence of thermal conductivity l =v F  ~ 200 nm    c h  h )(  c e  e ) ~  c  ) 2    ~  c  ) 2 l =v F  ~ 0.2  m Magnetoresistance 00 FeSe Strong reduction of  /T at low fields Plateau at high fields  e l /T ~ N(E F )v F l FeSe Long mean free path Hard to explain a sharp kink at low fields and a plateau in a nearly whole vortex state ① Vortex scattering due to long mean free path

Anomalous field dependence of thermal conductivity 00 FeSe Strong reduction of  /T at low fields Plateau at high fields ② Possible phase transition in the SC state K. Krishana, et al., Science (1997). BSCCO Field induced change of gap symmetry d x2-y2  d x2-y2 + id xy or d x2-y2 + is FeSe s  s + id (???)

Anomalous field dependence of thermal conductivity 00 FeSe Strong reduction of  /T at low fields Plateau at high fields ③ Lifting nodes under magnetic field V. Mishra et al., Phys. Rev. B, 80, (2009). Plateau with finite  /T  Small SC gap already suppressed at low fields

High-field anomaly in thermal conductivity H*

Proposed new high-fied phase

Summary FeSe T c very sensitive to pressure Apparent strong orbital ordering in ARPES, STM, no magnetism strong nematic ordering (resistivity anisotropy???) Big challenge to electronic structure theory! SC state consistent with weak nodes (easily removed by perturbation)