Lecture 9 - Cop-win Graphs and Retracts Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Mathematical Preliminaries
Bellwork If you roll a die, what is the probability that you roll a 2 or an odd number? P(2 or odd) 2. Is this an example of mutually exclusive, overlapping,
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Factors, Primes & Composite Numbers
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Introduction to Algorithms 6.046J/18.401J/SMA5503
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
ZMQS ZMQS
Randomized Algorithms Randomized Algorithms CS648 1.
COMP 482: Design and Analysis of Algorithms
Comp 122, Spring 2004 Graph Algorithms – 2. graphs Lin / Devi Comp 122, Fall 2004 Identification of Edges Edge type for edge (u, v) can be identified.
© S Haughton more than 3?
Great Theoretical Ideas in Computer Science for Some.
Graphs, Planar graphs Graph coloring
The x- and y-Intercepts
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Drawing Graphs of Quadratic Functions
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
1 On c-Vertex Ranking of Graphs Yung-Ling Lai & Yi-Ming Chen National Chiayi University Taiwan.
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
Connectivity - Menger’s Theorem Graphs & Algorithms Lecture 3.
Abdollah Khodkar Department of Mathematics University of West Georgia Joint work with Arezoo N. Ghameshlou, University of Tehran.
We will resume in: 25 Minutes.
CS203 Lecture 15.
1 Unit 1 Kinematics Chapter 1 Day
Trees Chapter 11.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Epp, section 10.? CS 202 Aaron Bloomfield
Advanced Topics in Algorithms and Data Structures
1 Decomposing Hypergraphs with Hypertrees Raphael Yuster University of Haifa - Oranim.
Interval Graph Test.
1 A Graph-Theoretic Network Security Game M. Mavronicolas , V. Papadopoulou , A. Philippou  and P. Spirakis § University of Cyprus, Cyprus  University.
Minimum Vertex Cover in Rectangle Graphs
1 Graphs with Maximal Induced Matchings of the Same Size Ph. Baptiste 1, M. Kovalyov 2, Yu. Orlovich 3, F. Werner 4, I. Zverovich 3 1 Ecole Polytechnique,
1 Almost all cop-win graphs contain a universal vertex Anthony Bonato Ryerson University CanaDAM 2011.
Cops and Robbers1 Conjectures on Cops and Robbers Anthony Bonato Ryerson University Joint Mathematics Meetings AMS Special Session.
Week 11 – Cop number of outerplanar graphs Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
What is the next line of the proof? a). Let G be a graph with k vertices. b). Assume the theorem holds for all graphs with k+1 vertices. c). Let G be a.
Cops and Robbers1 Catch me if you can! The Game of Cops and Robbers on Graphs Anthony Bonato Ryerson University ICMCM’11 December 2011.
Cops and Robbers1 Cops and Robbers: Directions and Generalizations Anthony Bonato Ryerson University GRASTA 2012.
The length of vertex pursuit games Anthony Bonato Ryerson University CCC 2013.
Lecture 12 - Variants of Cops and Robbers Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
Week 1 – Introduction to Graph Theory I Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
CS Lecture 26 Monochrome Despite Himself. Pigeonhole Principle: If we put n+1 pigeons into n holes, some hole must receive at least 2 pigeons.
Overprescribed Cops and Robbers Anthony Bonato Ryerson University GRASCan 2016.
Algorithms and Complexity
Throttling for Cops and Robbers on Graphs
Miniconference on the Mathematics of Computation
Discrete Mathematics and its Applications Lecture 8 – Cop-win Graphs
Miniconference on the Mathematics of Computation
Modelling and Searching Networks Lecture 8 – Cop-win Graphs
Discrete Mathematics and its Applications Lecture 7 – Cops and Robbers
Miniconference on the Mathematics of Computation
Modelling and Searching Networks Lecture 10 – Cop Number and Genus
Almost all cop-win graphs contain a universal vertex
Presentation transcript:

Lecture 9 - Cop-win Graphs and Retracts Dr. Anthony Bonato Ryerson University AM8002 Fall 2014

Reminder: Cops and Robbers played on reflexive graphs G two players Cops C and robber R play at alternate time-steps (cops first) with perfect information players move to vertices along edges; allowed to moved to neighbors or pass cops try to capture (i.e. land on) the robber, while robber tries to evade capture minimum number of cops needed to capture the robber is the cop number c(G) –well-defined as c(G) ≤ |V(G)| 2

Cop-win graphs consider the case when one cop has a winning strategy; i.e. c(G) = 1 –cop-win graphs introduced by (Nowakowski, Winkler, 83) and independently by (Quilliot, 78) 3

4

R.J. Nowakowski, P. Winkler Vertex-to- vertex pursuit in a graph, Discrete Mathematics 43 (1983) pages > 300 citations (most for either author) 5

Examples 1.Cliques 2.Graphs with universal vertices 3.Trees. 4.What about…? 6

Retracts let H be an induced subgraph of G a homomorphism f: G → H is a retraction if f(x) = x for all x in V(H). We say that H is a retract of G. examples: 1)H is a single vertex (recall G is reflexive). 2)Let H be the subgraph induced by {1,2,3,4}: - the mapping sending 5 to 4 fixing all other vertices is a retraction; - what if we map 5 to 2?

Retracts and cop number Theorem 9.1: If H is a retract of G, then c(H) ≤ c(G). proof uses shadow strategy Corollary: If G is cop-win, then so is H. 8

Retracts, continued Theorem 9.2: If H is a retract of G, then c(G) ≤ max{c(H),c(G-H)+1}. 9

Discussion Prove the previous theorem: Theorem 9.2: If H is a retract of G, then c(G) ≤ max{c(H),c(G-H)+1}. 10

Characterization node u is a corner if there is a v such that N[v] contains N[u] –v is the parent; u is the child a graph is dismantlable if we can iteratively delete corners until there is only one vertex examples: cliques, trees, the following graph… 11

A dismantlable graph 12

A simple lemma Lemma 9.3: If G is cop-win, then G contains at least one corner. Proof: Consider the second-to-last move of the cop using a winning strategy. No matter what move the robber makes, he will lose in the next round. Hence, the cop must be joined to the robber’s vertex u, and all of its neighbours. It follows that u is a corner. □ 13

Characterization Theorem 9.4 (Nowakowski, Winkler 83; Quilliot,78) A graph is cop-win if and only if it is dismantlable. idea: cop-win graphs always have corners; retract corner and play shadow strategy; - dismantlable graphs are cop-win by induction 14

Cop-win orderings a permutation v 1, v 2, …, v n of V(G) is a cop-win ordering if there exist vertices w 1, w 2, …, w n such that for all i, w i is the parent of v i in the subgraph induced V(G) \ {v j : j > i}. –a cop-win ordering dismantlability

Discussion 1.Explain why the following graph is cop- win. 2.Explain why a hypercube Q n, where n > 1, is never cop-win. 16

Cop-win Strategy (Clarke, Nowakowski, 2001) (1,2,…,n) a cop-win ordering G 1 = G, i > 1, G i : subgraph induced by deleting 1, …, i-1 f i : G i → G i+1 retraction mapping i to a fixed one of its parents F i = f i-1 ○… ○ f 2 ○ f 1 –a homomorphism idea: robber on u, think of F i (u) shadow of robber –cop moves to capture shadow –works as the F i are homomorphisms results in a capture in at most n moves of cop 17

The NW relation (Nowakowski,Winkler,83) introduced a sequence of relations characterizing cop- win graphs u ≤ 0 v if u = v u ≤ i v if for all x in N[u], there is a y in N[v] such that x ≤ j y for some j < i. 18

Example 19 u v w yz u ≤ 1 v u ≤ 2 w

Characterization the relations are ≤ i monotone increasing; thus, there is an integer k such that ≤ k = ≤ k+1 –write: ≤ k = ≤ Theorem 8.5 (Nowakowski, Winkler, 83) A cop has a winning strategy iff ≤ is V(G) x V(G). 20

k cops may define an analogous relation but in V(G) x V(G k ) (categorical product) Theorem 9.6 (Clarke,MacGillivray,12) k cops have a winning strategy iff the relation ≤ is V(G) x V(G k ). 21