An Introduction to Description Logics

Slides:



Advertisements
Similar presentations
Hybrid Logics and Ontology Languages
Advertisements

Charting the Potential of Description Logic for the Generation of Referring Expression SELLC, Guangzhou, Dec Yuan Ren, Kees van Deemter and Jeff.
The Semantic Web: Ontologies and OWL Ian Horrocks and Alan Rector Summary.
Description Logic Based Ontology Languages Ian Horrocks Information Systems Group Oxford University Computing Laboratory.
Ontologies and Databases Ian Horrocks Information Systems Group Oxford University Computing Laboratory.
Query Answering based on Standard and Extended Modal Logic Evgeny Zolin The University of Manchester
Modal Logic with Variable Modalities & its Applications to Querying Knowledge Bases Evgeny Zolin The University of Manchester
CS848: Topics in Databases: Foundations of Query Optimization Topics covered  Introduction to description logic: Single column QL  The ALC family of.
Knowledge Representation and Reasoning using Description Logic Presenter Shamima Mithun.
OWL - DL. DL System A knowledge base (KB) comprises two components, the TBox and the ABox The TBox introduces the terminology, i.e., the vocabulary of.
Query Answering for OWL-DL with Rules Boris Motik Ulrike Sattler Rudi Studer.
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
Analyzing Minerva1 AUTORI: Antonello Ercoli Alessandro Pezzullo CORSO: Seminari di Ingegneria del SW DOCENTE: Prof. Giuseppe De Giacomo.
Combining the strengths of UMIST and The Victoria University of Manchester A Tableaux Decision Procedure for SHOIQ Ian Horrocks and Ulrike Sattler University.
Description Logic Reasoning
How can Computer Science contribute to Research Publishing?
Description Logics. Outline Knowledge Representation Knowledge Representation Ontology Language Ontology Language Description Logics Description Logics.
DL systems DL and the Web Ilie Savga
Part 6: Description Logics. Languages for Ontologies In early days of Artificial Intelligence, ontologies were represented resorting to non-logic-based.
Basics of Reasoning in Description Logics
FiRE Fuzzy Reasoning Engine Nikolaos Simou National Technical University of Athens.
DLs and Ontology Languages. ’s OWL (like OIL & DAML+OIL) based on a DL –OWL DL effectively a “Web-friendly” syntax for SHOIN i.e., ALC extended with transitive.
Description Logics Franz Baader, Ian Horrocks, Ulrike Sattler Presented By Jahan Ara Arju Muhammad Nazmus Sakib CSCE
An Introduction to Description Logics. What Are Description Logics? A family of logic based Knowledge Representation formalisms –Descendants of semantic.
Computing & Information Sciences Kansas State University Wednesday, 08 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 08 October.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
Description Logics. What Are Description Logics? A family of logic based KR formalisms – Descendants of semantic networks and KL-ONE – Describe domain.
LDK R Logics for Data and Knowledge Representation ClassL (part 3): Reasoning with an ABox 1.
Presented by:- Somya Gupta( ) Akshat Malu ( ) Swapnil Ghuge ( ) Franz Baader, Ian Horrocks, and Ulrike Sattler.
Topics in artificial intelligence 1/1 Dr hab. inż. Joanna Józefowska, prof. PP Reasoning and search techniques.
An Introduction to Description Logics (chapter 2 of DLHB)
Semantic web course – Computer Engineering Department – Sharif Univ. of Technology – Fall Description Logics: Logic foundation of Semantic Web Semantic.
Advanced topics in software engineering (Semantic web)
Description Logics.
LDK R Logics for Data and Knowledge Representation Description Logics (ALC)
More on Description Logic(s) Frederick Maier. Note Added 10/27/03 So, there are a few errors that will be obvious to some: So, there are a few errors.
OilEd An Introduction to OilEd Sean Bechhofer. Topics we will discuss Basic OilEd use –Defining Classes, Properties and Individuals in an Ontology –This.
DL Overview Second Pass Ming Fang 06/19/2009. Outlines  Description Languages  Knowledge Representation in DL  Logical Inference in DL.
Lecture 16 Description Logics Topics Chunking Overview of MeaningReadings: Text 13.5 NLTK book 7.2 March 20, 2013 CSCE 771 Natural Language Processing.
LDK R Logics for Data and Knowledge Representation ClassL (Propositional Description Logic with Individuals) 1.
References [1] D:\My Documents\SemanticWebWorkshop\kaynak\Ian Horrocks - CS646\intro-2004.pptD:\My Documents\SemanticWebWorkshop\kaynak\Ian Horrocks -
Description Logics Dr. Alexandra I. Cristea. Description Logics Description Logics allow formal concept definitions that can be reasoned about to be expressed.
ece 627 intelligent web: ontology and beyond
1 First Order Logic CS 171/271 (Chapter 8) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Knowledge Repn. & Reasoning Lec #11+13: Frame Systems and Description Logics UIUC CS 498: Section EA Professor: Eyal Amir Fall Semester 2004.
Charting the Potential of Description Logic for the Generation of Referring Expression SELLC, Guangzhou, Dec Yuan Ren, Kees van Deemter and Jeff.
Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2011 Adina Magda Florea
Presented by Kyumars Sheykh Esmaili Description Logics for Data Bases (DLHB,Chapter 16) Semantic Web Seminar.
Of 29 lecture 15: description logic - introduction.
LDK R Logics for Data and Knowledge Representation Description Logics: family of languages.
Ontology Technology applied to Catalogues Paul Kopp.
Knowledge Representation and Inference Dr Nicholas Gibbins 32/3019.
LDK R Logics for Data and Knowledge Representation Description Logics.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 16 Description Logic.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Logics for Data and Knowledge Representation
Lecture 17 Description Logics
Description Logics.
ece 720 intelligent web: ontology and beyond
Description Logic: A Formal Foundation for Languages and Tools
ece 720 intelligent web: ontology and beyond
Logics for Data and Knowledge Representation
Logics for Data and Knowledge Representation
Logics for Data and Knowledge Representation
Logics for Data and Knowledge Representation
Description Logics.
Logics for Data and Knowledge Representation
Description logics (book, page 456)
CIS Monthly Seminar – Software Engineering and Knowledge Management IS Enterprise Modeling Ontologies Presenter : Dr. S. Vasanthapriyan Senior Lecturer.
Presentation transcript:

An Introduction to Description Logics

What Are Description Logics? A family of logic based Knowledge Representation formalisms Descendants of semantic networks and KL-ONE Describe domain in terms of concepts (classes), roles (relationships) and individuals Distinguished by: Formal semantics (typically model theoretic) Decidable fragments of FOL Closely related to Propositional Modal & Dynamic Logics Provision of inference services Sound and complete decision procedures for key problems Implemented systems (highly optimised)

Happy-Father ´ Man u 9 has-child Female u … hJohn, Maryi : has-child DL Architecture Knowledge Base Tbox (schema) Man ´ Human u Male Happy-Father ´ Man u 9 has-child Female u … Interface Inference System Abox (data) John : Happy-Father hJohn, Maryi : has-child

Short History of Description Logics Phase 1: Incomplete systems (Back, Classic, Loom, . . . ) Based on structural algorithms Phase 2: Development of tableau algorithms and complexity results Tableau-based systems for Pspace logics (e.g., Kris, Crack) Investigation of optimisation techniques Phase 3: Tableau algorithms for very expressive DLs Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer) Relationship to modal logic and decidable fragments of FOL

Latest Developments Phase 4: Mature implementations Mainstream applications and Tools Databases Consistency of conceptual schemata (EER, UML etc.) Schema integration Query subsumption (w.r.t. a conceptual schema) Ontologies and Semantic Web (and Grid) Ontology engineering (design, maintenance, integration) Reasoning with ontology-based markup (meta-data) Service description and discovery Commercial implementations Cerebra system from Network Inference Ltd

Description Logic Family DLs are a family of logic based KR formalisms Particular languages mainly characterised by: Set of constructors for building complex concepts and roles from simpler ones Set of axioms for asserting facts about concepts, roles and individuals ALC is the smallest DL that is propositionally closed Constructors include booleans (and, or, not), and Restrictions on role successors E.g., concept describing “happy fathers” could be written: Man  hasChild.Female  hasChild.Male  hasChild.(Rich  Happy)

DL Concept and Role Constructors Range of other constructors found in DLs, including: Number restrictions (cardinality constraints) on roles, e.g., 3 hasChild, 1 hasMother Qualified number restrictions, e.g., 2 hasChild.Female, 1 hasParent.Male Nominals (singleton concepts), e.g., {Italy} Concrete domains (datatypes), e.g., hasAge.(21), earns spends.< Inverse roles, e.g., hasChild- (hasParent) Transitive roles, e.g., hasChild* (descendant) Role composition, e.g., hasParent o hasBrother (uncle)

DL Knowledge Base DL Knowledge Base (KB) normally separated into 2 parts: TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.: HappyFather  Man  hasChild.Female  … Elephant  Animal  Large  Grey transitive(ancestor) ABox is a set of axioms describing a concrete situation (data), e.g.: John:HappyFather <John,Mary>:hasChild Separation has no logical significance But may be conceptually and implementationally convenient

OWL as DL: Class Constructors XMLS datatypes as well as classes in 8P.C and 9P.C E.g., 9hasAge.nonNegativeInteger Arbitrarily complex nesting of constructors E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor)

RDFS Syntax E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor): <owl:Class> <owl:intersectionOf rdf:parseType=" collection"> <owl:Class rdf:about="#Person"/> <owl:Restriction> <owl:onProperty rdf:resource="#hasChild"/> <owl:toClass> <owl:unionOf rdf:parseType=" collection"> <owl:Class rdf:about="#Doctor"/> <owl:hasClass rdf:resource="#Doctor"/> </owl:Restriction> </owl:unionOf> </owl:toClass> </owl:intersectionOf> </owl:Class>

OWL as DL: Axioms Axioms (mostly) reducible to inclusion (v) C ´ D iff both C v D and D v C Obvious FOL equivalences E.g., C ´ D  x.C(x)  D(x), C v D  x.C(x)  D(x)

XML Schema Datatypes in OWL OWL supports XML Schema primitive datatypes E.g., integer, real, string, … Strict separation between “object” classes and datatypes Disjoint interpretation domain DD for datatypes For a datavalue d, dI µ DD And DD Å DI = ; Disjoint “object” and datatype properties For a datatype propterty P, PI µ DI £ DD For object property S and datatype property P, SI Å PI = ; Equivalent to the “(Dn)” in SHOIN(Dn)

Why Separate Classes and Datatypes? Philosophical reasons: Datatypes structured by built-in predicates Not appropriate to form new datatypes using ontology language Practical reasons: Ontology language remains simple and compact Semantic integrity of ontology language not compromised Implementability not compromised — can use hybrid reasoner Only need sound and complete decision procedure for: dI1 Å … Å dIn, where d is a (possibly negated) datatype

OWL DL Semantics Mapping OWL to equivalent DL (SHOIN(Dn)): Facilitates provision of reasoning services (using DL systems) Provides well defined semantics DL semantics defined by interpretations: I = (DI, ¢I), where DI is the domain (a non-empty set) ¢I is an interpretation function that maps: Concept (class) name A ! subset AI of DI Role (property) name R ! binary relation RI over DI Individual name i ! iI element of DI

DL Semantics Interpretation function ¢I extends to concept expressions in the obvious way, i.e.:

Interpretation Example  = {v, w, x, y, z} AI = {v, w, x} BI = {x, y} RI = {(v, w), (v, x), (y, x), (x, z)} : B = A u B = : A t B = 9 R B = 8 R B = 9 R (9 R A) = 9 R : (A t B) = 6 1 R A = > 1 R A = AI v w x y z BI

DL Knowledge Bases (Ontologies) An OWL ontology maps to a DL Knowledge Base K = hT , Ai T (Tbox) is a set of axioms of the form: C v D (concept inclusion) C ´ D (concept equivalence) R v S (role inclusion) R ´ S (role equivalence) R+ v R (role transitivity) A (Abox) is a set of axioms of the form x 2 D (concept instantiation) hx,yi 2 R (role instantiation) Two sorts of Tbox axioms often distinguished “Definitions” C v D or C ´ D where C is a concept name General Concept Inclusion axioms (GCIs) C v D where C in an arbitrary concept

Knowledge Base Semantics An interpretation I satisfies (models) an axiom A (I ² A): I ² C v D iff CI µ DI I ² C ´ D iff CI = DI I ² R v S iff RI µ SI I ² R ´ S iff RI = SI I ² R+ v R iff (RI)+ µ RI I ² x 2 D iff xI 2 DI I ² hx,yi 2 R iff (xI,yI) 2 RI I satisfies a Tbox T (I ² T ) iff I satisfies every axiom A in T I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A I satisfies an KB K (I ² K) iff I satisfies both T and A

Multiple Models -v- Single Model DL KB doesn’t define a single model, it is a set of constraints that define a set of possible models No constraints (empty KB) means any model is possible More constraints means fewer models Too many constraints may mean no possible model (inconsistent KB) In contrast, DBs (and frame/rule KR systems) make assumptions such that DB/KB defines a single model Unique name assumption Different names always interpreted as different individuals Closed world assumption Domain consists only of individuals named in the DB/KB Minimal models Extensions are as small as possible

Example of Multiple Models KB = {} KB = {a:C, b:D, c:C, d:E} KB = {a:C, b:D, c:C, d:E, b:C} KB = {a:C, b:D, c:C, d:E, b:C D v C} D v C, E v C} D v C, E v C, d:: C} I1:  = {v, w, x, y, z} CI = {v, w, y} DI = {x, y} EI = {z} aI = v bI = x cI = w dI = y I3: aI = v bI = y cI = w dI = z I2:  = {v, w, x, y, z} CI = {v, w, y} DI = {x, y} EI = {z} aI = v bI = x cI = w dI = z I4: CI = {v, w, x, y} cI = y dI = y

Example of Single Model KB = {} KB = {a:C, b:D, c:C, d:E} KB = {a:C, b:D, c:C, d:E, b:C} KB = {a:C, b:D, c:C, d:E, b:C E v C} I:  = {}  = {a, b, c, d} CI = {a, b, c} DI = {b} EI = {d} aI = a bI = b cI = c dI = d I:  = {a, b, c, d} CI = {a, c} DI = {b} EI = {d} aI = a bI = b cI = c dI = d CI = {a, b, c, d}

Inference Tasks Knowledge is correct (captures intuitions) C subsumes D w.r.t. K iff for every model I of K, CI µ DI Knowledge is minimally redundant (no unintended synonyms) C is equivallent to D w.r.t. K iff for every model I of K, CI = DI Knowledge is meaningful (classes can have instances) C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI  ; Querying knowledge x is an instance of C w.r.t. K iff for every model I of K, xI 2 CI hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) 2 RI Knowledge base consistency A KB K is consistent iff there exists some model I of K

Single Model -v- Multiple Model Multiple models: Expressively powerful Boolean connectives, including : and t Can capture incomplete information E.g., using t and 9 Monotonic Adding information preserves truth Reasoning (e.g., querying) is hard/slow Queries may give counter-intuitive results in some cases Single model: Expressively weaker (in most respects) No negation or disjunction Can’t capture incomplete information Nonmonotonic Adding information does not preserve truth Reasoning (e.g., querying) is easy/fast Queries may give counter-intuitive results in some cases