Relations And Functions. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all.

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Equations in Quadratic Form
Trigonometric Equations I
The Law of Cosines.
SINE AND COSINE FUNCTIONS
The Law of Sines.
Symmetric about the y axis
SIMPLE AND COMPOUND INTEREST
2.4: Odd and Even Functions So for an even function, for every point (x, y) on the graph, the.
Mathematical Models Constructing Functions And Optimisation.
Matrices are identified by their size.
If A and B are both m × n matrices then the sum of A and B, denoted A + B, is a matrix obtained by adding corresponding elements of A and B. add these.
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
Dividing Polynomials.
exponential functions
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
Relations And Functions. Objective All students will be able to determine whether a relation is a function and identify the domain and range of a function.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
Relations And Functions. A relation from non empty set A to a non empty set B is a subset of cartesian product of A x B. This is a relation The domain.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
REVIEW A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all x values.
This presentation was found at We made some minor formatting changes on slides because of overlapping material, and added this slide.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
Relations And Functions. A relation is a set of ordered pairs {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all x.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
Warm Up What algebraic equation shows the sentence four plus a number divided by six is equal to the product of twelve and the same number?
Relations And Functions © 2002 by Shawna Haider. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain.
REVIEW A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all x values.
TRIGONOMETRIC IDENTITIES
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
Relations And Functions.
Absolute Value.
INVERSE FUNCTIONS.
THE UNIT CIRCLE.
THE UNIT CIRCLE.
Relations And Functions.
INVERSE FUNCTIONS Chapter 1.5 page 120.
Relations And Functions.
Relations And Functions © 2002 by Shawna Haider.
Relations And Functions.
Solving Quadratic Equations.
INVERSE FUNCTIONS.
Relations And Functions.
Relations and functions
Relations And Functions.
exponential functions
Relations And Functions.
Relations And Functions.
Rana karan dev sing.
Presentation transcript:

Relations And Functions

A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all x values in the relation {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} The range is the set of all y values in the relation {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} domain = {-1,0,2,4,9} These are the x values written in a set from smallest to largest range = {-6,-2,3,5,9} These are the y values written in a set from smallest to largest

Domain (set of all x’s) Range (set of all y’s) A relation assigns the x’s with y’s This relation can be written {(1,6), (2,2), (3,4), (4,8), (5,10)}

A function f from set A to set B is a rule of correspondence that assigns to each element x in the set A exactly one element y in the set B. Whew! What did that say? Set A is the domain Set B is the range A function f from set A to set B is a rule of correspondence that assigns to each element x in the set A exactly one element y in the set B. Must use all the x’s A function f from set A to set B is a rule of correspondence that assigns to each element x in the set A exactly one element y in the set B. The x value can only be assigned to one y This is a function ---it meets our conditions All x’s are assigned No x has more than one y assigned

Set A is the domain Set B is the range Must use all the x’s Let’s look at another relation and decide if it is a function. The x value can only be assigned to one y This is a function ---it meets our conditions All x’s are assigned No x has more than one y assigned The second condition says each x can have only one y, but it CAN be the same y as another x gets assigned to.

A good example that you can “relate” to is students in our maths class this semester are set A. The grade they earn out of the class is set B. Each student must be assigned a grade and can only be assigned ONE grade, but more than one student can get the same grade (we hope so---we want lots of A’s). The example show on the previous screen had each student getting the same grade. That’s okay Is the relation shown above a function? NO Why not??? 2 was assigned both 4 and 10 A good example that you can “relate” to is students in our maths class this semester are set A. The grade they earn out of the class is set B. Each student must be assigned a grade and can only be assigned ONE grade, but more than one student can get the same grade (we hope so---we want lots of A’s). The example shown on the previous screen had each student getting the same grade. That’s okay.

Set A is the domain Set B is the range Must use all the x’s The x value can only be assigned to one y This is not a function---it doesn’t assign each x with a y Check this relation out to determine if it is a function. It is not---3 didn’t get assigned to anything Comparing to our example, a student in maths must receive a grade

Set A is the domain Set B is the range Must use all the x’s The x value can only be assigned to one y This is a function Check this relation out to determine if it is a function. This is fine—each student gets only one grade. More than one can get an A and I don’t have to give any D’s (so all y’s don’t need to be used).

We commonly call functions by letters. Because function starts with f, it is a commonly used letter to refer to functions. The left hand side of this equation is the function notation. It tells us two things. We called the function f and the variable in the function is x. This means the right hand side is a function called f This means the right hand side has the variable x in it The left side DOES NOT MEAN f times x like brackets usually do, it simply tells us what is on the right hand side.

So we have a function called f that has the variable x in it. Using function notation we could then ask the following: Find f (2). This means to find the function f and instead of having an x in it, put a 2 in it. So let’s take the function above and make brackets everywhere the x was and in its place, put in a 2. Don’t forget order of operations---powers, then multiplication, finally addition & subtraction Remember---this tells you what is on the right hand side---it is not something you work. It says that the right hand side is the function f and it has x in it.

Find f (-2). This means to find the function f and instead of having an x in it, put a -2 in it. So let’s take the function above and make brackets everywhere the x was and in its place, put in a -2. Don’t forget order of operations---powers, then multiplication, finally addition & subtraction

Find f (k). This means to find the function f and instead of having an x in it, put a k in it. So let’s take the function above and make brackets everywhere the x was and in its place, put in a k. Don’t forget order of operations---powers, then multiplication, finally addition & subtraction

Find f (2k). This means to find the function f and instead of having an x in it, put a 2k in it. So let’s take the function above and make brackets everywhere the x was and in its place, put in a 2k. Don’t forget order of operations---powers, then multiplication, finally addition & subtraction

Let's try a new function Find g(1)+ g(-4).

The last thing we need to learn about functions for this section is something about their domain. Recall domain meant "Set A" which is the set of values you plug in for x. For the functions we will be dealing with, there are two "illegals": 1.You can't divide by zero (denominator (bottom) of a fraction can't be zero) 2.You can't take the square root (or even root) of a negative number When you are asked to find the domain of a function, you can use any value for x as long as the value won't create an "illegal" situation.

Find the domain for the following functions: Since no matter what value you choose for x, you won't be dividing by zero or square rooting a negative number, you can use anything you want so we say the answer is: All real numbers x. If you choose x = 2, the denominator will be 2 – 2 = 0 which is illegal because you can't divide by zero. The answer then is: All real numbers x such that x ≠ 2. means does not equal illegal if this is zero Note: There is nothing wrong with the top = 0 just means the fraction = 0

Let's find the domain of another one: We have to be careful what x's we use so that the second "illegal" of square rooting a negative doesn't happen. This means the "stuff" under the square root must be greater than or equal to zero (maths way of saying "not negative"). Can't be negative so must be ≥ 0 solve this So the answer is: All real numbers x such that x ≠ 4

Summary of How to Find the Domain of a Function Look for any fractions or square roots that could cause one of the two "illegals" to happen. If there aren't any, then the domain is All real numbers x. If there are fractions, figure out what values would make the bottom equal zero and those are the values you can't use. The answer would be: All real numbers x such that x ≠ those values. If there is a square root, the "stuff" under the square root cannot be negative so set the stuff ≥ 0 and solve. Then answer would be: All real numbers x such that x ≠ whatever you got when you solved. NOTE: Of course your variable doesn't have to be x, can be whatever is in the problem.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar