C&O 355 Lecture 9 N. Harvey TexPoint fonts used in EMF.

Slides:



Advertisements
Similar presentations
Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes.
Advertisements

The Primal-Dual Method: Steiner Forest TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AA A A A AA A A.
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Duality for linear programming. Illustration of the notion Consider an enterprise producing r items: f k = demand for the item k =1,…, r using s components:
C&O 355 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
IEOR 4004 Midterm Review (part I)
C&O 355 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 9
C&O 355 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Summary of complementary slackness: 1. If x i ≠ 0, i= 1, 2, …, n the ith dual equation is tight. 2. If equation i of the primal is not tight, y i =0. 1.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Geometry and Theory of LP Standard (Inequality) Primal Problem: Dual Problem:
IEOR 4004 Midterm review (Part II) March 12, 2014.
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 12 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
Introduction to Algorithms
C&O 355 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2006 Lecture 9 Wednesday, 11/15/06 Linear Programming.
Linear Programming and Approximation
Totally Unimodular Matrices Lecture 11: Feb 23 Simplex Algorithm Elliposid Algorithm.
1 Introduction to Linear and Integer Programming Lecture 9: Feb 14.
Introduction to Linear and Integer Programming Lecture 7: Feb 1.
Duality Lecture 10: Feb 9. Min-Max theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum Cut Both.
Approximation Algorithms
Computational Methods for Management and Economics Carla Gomes
Approximation Algorithms: Bristol Summer School 2008 Seffi Naor Computer Science Dept. Technion Haifa, Israel TexPoint fonts used in EMF. Read the TexPoint.
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
CS38 Introduction to Algorithms Lecture 16 May 22, CS38 Lecture 16.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
Advanced Operations Research Models Instructor: Dr. A. Seifi Teaching Assistant: Golbarg Kazemi 1.
C&O 355 Mathematical Programming Fall 2010 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Linear Program Set Cover. Given a universe U of n elements, a collection of subsets of U, S = {S 1,…, S k }, and a cost function c: S → Q +. Find a minimum.
C&O 355 Mathematical Programming Fall 2010 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
OR Chapter 7. The Revised Simplex Method  Recall Theorem 3.1, same basis  same dictionary Entire dictionary can be constructed as long as we.
Lecture.6. Table of Contents Lp –rounding Dual Fitting LP-Duality.
C&O 355 Lecture 24 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Approximation Algorithms Duality My T. UF.
Linear Programming Piyush Kumar Welcome to CIS5930.
Approximation Algorithms based on linear programming.
Lap Chi Lau we will only use slides 4 to 19
Chap 10. Sensitivity Analysis
Topics in Algorithms Lap Chi Lau.
The minimum cost flow problem
Chap 9. General LP problems: Duality and Infeasibility
Analysis of Algorithms
Linear Programming and Approximation
Chapter 5. The Duality Theorem
Lecture 20 Linear Program Duality
C&O 355 Mathematical Programming Fall 2010 Lecture 7
Presentation transcript:

N. Harvey http://www.math.uwaterloo.ca/~harvey/ C&O 355 Lecture 9 N. Harvey http://www.math.uwaterloo.ca/~harvey/ TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA

Outline Complementary Slackness “Crash Course” in Computational Complexity Review of Geometry & Linear Algebra Ellipsoids

Duality: Geometric View We can “generate” a new constraint aligned with c by taking a conic combination (non-negative linear combination) of constraints tight at x. What if we use constraints not tight at x? -x1+x2· 1 x2 x x1 + 6x2 · 15 Objective Function c x1

Duality: Geometric View We can “generate” a new constraint aligned with c by taking a conic combination (non-negative linear combination) of constraints tight at x. What if we use constraints not tight at x? -x1+x2· 1 x2 x Doesn’t prove x is optimal! x1 + 6x2 · 15 Objective Function c x1

Duality: Geometric View What if we use constraints not tight at x? This linear combination is a feasible dual solution, but not an optimal dual solution Complementary Slackness: To get an optimal dual solution, must only use constraints tight at x. -x1+x2· 1 x2 x Doesn’t prove x is optimal! x1 + 6x2 · 15 Objective Function c x1

Weak Duality Primal LP Dual LP Theorem: “Weak Duality Theorem” If x feasible for Primal and y feasible for Dual then cTx · bTy. Proof: cT x = (AT y)T x = yT A x · yT b. ¥ Since y¸0 and Ax·b

When does equality hold here? Weak Duality Primal LP Dual LP Theorem: “Weak Duality Theorem” If x feasible for Primal and y feasible for Dual then cTx·bTy. Proof: When does equality hold here? Corollary: If x and y both feasible and cTx=bTy then x and y are both optimal.

When does equality hold here? Weak Duality Primal LP Dual LP Theorem: “Weak Duality Theorem” If x feasible for Primal and y feasible for Dual then cTx·bTy. Proof: When does equality hold here? Equality holds for ith term if either yi=0 or

Weak Duality Primal LP Dual LP Theorem: “Weak Duality Theorem” If x feasible for Primal and y feasible for Dual then cTx·bTy. Proof: Theorem: “Complementary Slackness” Suppose x feasible for Primal, y feasible for dual, and for every i, either yi=0 or . Then x and y are both optimal. Proof: Equality holds here. ¥

General Complementary Slackness Conditions Let x be feasible for primal and y be feasible for dual. Primal Dual Objective max cTx min bTy Variables x1, …, xn y1,…, ym Constraint matrix A AT Right-hand vector b c Constraints versus ith constraint: · ith constraint: ¸ ith constraint: = xj ¸ 0 xj · 0 xj unrestricted yi ¸ 0 yi · 0 yi unrestricted jth constraint: ¸ jth constraint: · jth constraint: = for all i, equality holds either for primal or dual and for all j, equality holds either for primal or dual , x and y are both optimal

Example Primal LP Challenge: What is the dual? What are CS conditions? Claim: Optimal primal solution is (3,0,5/3). Can you prove it?

Example CS conditions: x=(3,0,5/3) ) y must satisfy: Primal LP Dual LP CS conditions: Either x1+2x2+3x3=8 or y2=0 Either 4x2+5x3=2 or y3=0 Either y1+2y+2+4y3=6 or x2=0 Either 3y2+5y3=-1 or x3=0 x=(3,0,5/3) ) y must satisfy: y1+y2=5 y3=0 y2+5y3=-1 ) y = (16/3, -1/3, 0)

Complementary Slackness Summary Gives “optimality conditions” that must be satisfied by optimal primal and dual solutions (Sometimes) gives useful way to compute optimum dual from optimum primal More about this in Assignment 3 Extremely useful in “primal-dual algorithms”. Much more of this in C&O 351: Network Flows C&O 450/650: Combinatorial Optimization C&O 754: Approximation Algorithms

We’ve now finished C&O 350! Actually, they will cover 2 topics that we won’t Revised Simplex Method: A faster implementation of the algorithm we described Sensitivity Analysis: If we change c or b, how does optimum solution change?

Computational Complexity Field that seeks to understand how efficiently computational problems can be solved See CS 360, 365, 466, 764… What does “efficiently” mean? If problem input has size n, how much time to compute solution? (as a function of n) Problem can be solved “efficiently” if it can be solved in time ·nc, for some constant c. P = class of problems that can be solved efficiently.

Computational Complexity P = class of problems that can be solved efficiently i.e., solved in time ·nc, for some constant c, where n=input size. Related topic: certificates Instead of studying efficiency, study how easily can you certify the answer? NP = class of problems for which you can efficiently certify that “answer is yes” coNP = class of problems for which you can efficiently certify that “answer is no” Linear Programs Can certify that optimal value is large Can certify that optimal value is small (by giving primal solution x) (by giving dual solution y)

Computational Complexity NP coNP Can graph be colored with ¸ k colors? Does every coloring of graph use · k colors? NPÅcoNP Is LP value ¸ k? Many interesting problems Many interesting problems Is m a prime number? P Sorting, string matching, breadth-first search, … Open Problem: Is P=NP? Probably not One of the 7 most important problems in mathematics You win $1,000,000 if you solve it.

Computational Complexity NP coNP Can graph be colored with ¸ k colors? Does every coloring of graph use · k colors? NPÅcoNP Is LP value ¸ k? Many interesting problems Many interesting problems Is m a prime number? P Sorting, string matching, breadth-first search, … Open Problem: Is P=NPÅcoNP? Maybe… for most problems in NPÅcoNP, they are also in P. “Is m a prime number?”. Proven in P in 2002. “Primes in P” “Is LP value ¸ k?”. Proven in P in 1979. “Ellipsoid method” Leonid Khachiyan

Review Basics of Euclidean geometry Positive Semi-Definite Matrices Euclidean norm, unit ball, affine maps, volume Positive Semi-Definite Matrices Square roots Ellipsoids Rank-1 Updates Covering Hemispheres by Ellipsoids

2D Example Ellipsoid T(B) Unit ball B