CS8803-NS Network Science Fall 2013

Slides:



Advertisements
Similar presentations
EGEE-III INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Modeling Grid Job Time Properties Lovro.
Advertisements

CS8803-NS Network Science Fall 2013 Instructor: Constantine Dovrolis
Peer-to-Peer and Social Networks Power law graphs Small world graphs.
Complex Network Theory
Complex Networks Advanced Computer Networks: Part1.
Algorithmic and Economic Aspects of Networks Nicole Immorlica.
Emergence of Scaling in Random Networks Albert-Laszlo Barabsi & Reka Albert.
Analysis and Modeling of Social Networks Foudalis Ilias.
Week 5 - Models of Complex Networks I Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
Web as Network: A Case Study Networked Life CIS 112 Spring 2010 Prof. Michael Kearns.
VL Netzwerke, WS 2007/08 Edda Klipp 1 Max Planck Institute Molecular Genetics Humboldt University Berlin Theoretical Biophysics Networks in Metabolism.
Models of Network Formation Networked Life NETS 112 Fall 2013 Prof. Michael Kearns.
Weighted networks: analysis, modeling A. Barrat, LPT, Université Paris-Sud, France M. Barthélemy (CEA, France) R. Pastor-Satorras (Barcelona, Spain) A.
CSE 522 – Algorithmic and Economic Aspects of the Internet Instructors: Nicole Immorlica Mohammad Mahdian.
1 Evolution of Networks Notes from Lectures of J.Mendes CNR, Pisa, Italy, December 2007 Eva Jaho Advanced Networking Research Group National and Kapodistrian.
Complex Networks Third Lecture TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA TexPoint fonts used in EMF. Read the.
CS728 Lecture 5 Generative Graph Models and the Web.
Scale-free networks Péter Kómár Statistical physics seminar 07/10/2008.
CS8803-NS Network Science Fall 2013 Instructor: Constantine Dovrolis
Small-World File-Sharing Communities Adriana Iamnitchi, Matei Ripeanu and Ian Foster,
The Barabási-Albert [BA] model (1999) ER Model Look at the distribution of degrees ER ModelWS Model actorspower grid www The probability of finding a highly.
1 Complex systems Made of many non-identical elements connected by diverse interactions. NETWORK New York Times Slides: thanks to A-L Barabasi.
Common Properties of Real Networks. Erdős-Rényi Random Graphs.
CS Lecture 6 Generative Graph Models Part II.
Large-Scale Organization of Semantic Networks Mark Steyvers Josh Tenenbaum Stanford University.
Global topological properties of biological networks.
Advanced Topics in Data Mining Special focus: Social Networks.
CSE 522 – Algorithmic and Economic Aspects of the Internet Instructors: Nicole Immorlica Mohammad Mahdian.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 7 May 14, 2006
On Distinguishing between Internet Power Law B Bu and Towsley Infocom 2002 Presented by.
Error and Attack Tolerance of Complex Networks Albert, Jeong, Barabási (presented by Walfredo)
Summary from Previous Lecture Real networks: –AS-level N= 12709, M=27384 (Jan 02 data) route-views.oregon-ix.net, hhtp://abroude.ripe.net/ris/rawdata –
CS8803-NS Network Science Fall 2013
Peer-to-Peer and Social Networks Random Graphs. Random graphs E RDÖS -R ENYI MODEL One of several models … Presents a theory of how social webs are formed.
Random Graph Models of Social Networks Paper Authors: M.E. Newman, D.J. Watts, S.H. Strogatz Presentation presented by Jessie Riposo.
The Erdös-Rényi models
Information Networks Power Laws and Network Models Lecture 3.
(Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Oct 16th, 2012.
Topic 13 Network Models Credits: C. Faloutsos and J. Leskovec Tutorial
Author: M.E.J. Newman Presenter: Guoliang Liu Date:5/4/2012.
Clustering of protein networks: Graph theory and terminology Scale-free architecture Modularity Robustness Reading: Barabasi and Oltvai 2004, Milo et al.
Social Network Analysis Prof. Dr. Daning Hu Department of Informatics University of Zurich Mar 5th, 2013.
10 December, 2008 CIMCA2008 (Vienna) 1 Statistical Inferences by Gaussian Markov Random Fields on Complex Networks Kazuyuki Tanaka, Takafumi Usui, Muneki.
Class 9: Barabasi-Albert Model-Part I
Lecture 10: Network models CS 765: Complex Networks Slides are modified from Networks: Theory and Application by Lada Adamic.
LECTURE 2 1.Complex Network Models 2.Properties of Protein-Protein Interaction Networks.
Most of contents are provided by the website Network Models TJTSD66: Advanced Topics in Social Media (Social.
Performance Evaluation Lecture 1: Complex Networks Giovanni Neglia INRIA – EPI Maestro 10 December 2012.
Netlogo demo. Complexity and Networks Melanie Mitchell Portland State University and Santa Fe Institute.
Cmpe 588- Modeling of Internet Emergence of Scale-Free Network with Chaotic Units Pulin Gong, Cees van Leeuwen by Oya Ünlü Instructor: Haluk Bingöl.
Network (graph) Models
L – Modeling and Simulating Social Systems with MATLAB
Structures of Networks
Hiroki Sayama NECSI Summer School 2008 Week 2: Complex Systems Modeling and Networks Network Models Hiroki Sayama
Lecture 1: Complex Networks
Topics In Social Computing (67810)
A Network Model of Knowledge Acquisition
Empirical analysis of Chinese airport network as a complex weighted network Methodology Section Presented by Di Li.
Models of networks (synthetic networks or generative models): Random, Small-world, Scale-free, Configuration model and Random geometric model By: Ralucca.
How Do “Real” Networks Look?
How Do “Real” Networks Look?
How Do “Real” Networks Look?
Peer-to-Peer and Social Networks Fall 2017
Department of Computer Science University of York
Peer-to-Peer and Social Networks
From the Synthetic networks slide deck (didn’t have a chance to go over them at that time) By: Ralucca Gera, NPS.
Lecture 9: Network models CS 765: Complex Networks
Network Science: A Short Introduction i3 Workshop
Network Models Michael Goodrich Some slides adapted from:
Advanced Topics in Data Mining Special focus: Social Networks
Presentation transcript:

CS8803-NS Network Science Fall 2013 Instructor: Constantine Dovrolis constantine@gatech.edu http://www.cc.gatech.edu/~dovrolis/Courses/NetSci/

Disclaimers The following slides include only the figures or videos that we use in class; they do not include detailed explanations, derivations or descriptions covered in class. Many of the following figures are copied from open sources at the Web. I do not claim any intellectual property for the following material.

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Network models – Why and how? What does it mean to create a “network model”? What is the objective of this exercise? How do we know that a model is “realistic”? How do we know that a model is “useful”? How do we compare two models that seem equally realistic? Do we need models in our “brave new world” of big data?

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Reference point-1: ER random graphs G(n,m) and G(n,p) models (see lecture notes for derivations)

Emergence of giant connected component in G(n,p) as p increases http://networkx.lanl.gov/archive/networkx-1.1/examples/drawing/giant_component.html

Emergence of giant component See lecture notes for derivation of the following

Emergence of giant connected component in G(n,p) as p increases https://www.youtube.com/watch?v=mpe44sTSoF8

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

The configuration model

The configuration model http://mathinsight.org/generating_networks_desired_degree_distribution

For instance, power-law degree with exponential cutoff

Average path length

Clustering coefficient in random networks with given degree distribution

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Here is a more important question: Deriving an expression for the APL in this model has been proven very hard Here is a more important question: What is the minimum value of p for which we expect to see a small-world (logarithmic) path length? p >> 1/N

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Preferential attachment http://www3.nd.edu/~networks/Linked/newfile11.htm

Preferential attachment

Continuous-time model of PA (see class notes for derivations)

Avg path length in PA model

Clustering in PA model

“Statistical mechanics of complex networks” by R. Albert and A-L “Statistical mechanics of complex networks” by R.Albert and A-L.Barabasi

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Outline Network models – Why and how? Random network models ER or Poisson random graphs (covered last week) Random graphs with given degree distribution Watts-Strogatz model for small-world networks Network models based on stochastic evolution Preferential attachment Variants of preferential attachment Preferential attachment for weighted networks Duplication-based models Network models based on optimization Fabrikant-Koutsoupias-Papadimitriou model Application paper: modeling the evolution of the proteome using a duplication-based model Discussion about network modeling

Discussion about network models Random? Stochastic evolution? Optimization-based? How to choose? When does it matter? How do we compare two models that seem equally realistic? “All models are wrong but some are useful” But when is a model useful?