Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.

Slides:



Advertisements
Similar presentations
Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST) Nicole van Lipzig a, Susanne Crewell.
Advertisements

Institut für Physik der Atmosphäre Precipitation observation networks Martin Hagen DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Identification of Convective Hotspots in Mountainous Terrain Martin Hagen, Leslie Grebe, Joël van Baelen, Evelyne Richard.
Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Life Cycle of Deep Convection during the COPS Field Campaign (LIFCOC) Martin Hagen, Hartmut Höller, George Craig Institut.
Slide 1 Improved Initialization for Precipitation Forecasts: Analysis of the ETReC missions during COPS 2007 Andreas Dörnbrack, Martin Wirth, and George.
© Crown copyright 2006Page 1 CFMIP II sensitivity experiments Mark Webb (Met Office Hadley Centre) Johannes Quaas (MPI) Tomoo Ogura (NIES) With thanks.
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
JMA Takayuki MATSUMURA (Forecast Department, JMA) C Asia Air Survey co., ltd New Forecast Technologies for Disaster Prevention and Mitigation 1.
0 - 0.
Some questions on convection that could be addressed through another UK field program centered at Chilbolton Dan Kirshbaum 1.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
© University of Reading Richard Allan Department of Meteorology, University of Reading Thanks to: Jim Haywood and Malcolm.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.
Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der.
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
Torrential Rain in Central Karakorum, 9-10 September 1992: Simulations With the WRF Model A.Parodi (1), J. von Hardenberg (2), A. Provenzale (2), F. Viterbo.
Chapter 7 Test Prep Game. 1)What device measures wind speed? a) Thermometer b) Anemometer c) Barometer d) Psychrometer.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Week 1.
30 th September 2010 Bannister & Migliorini Slide 1 of 9 High-resolution assimilation and weather forecasting Ross Bannister and Stefano Migliorini (NCEO,
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Evaluation of ECHAM5 General Circulation Model using ISCCP simulator Swati Gehlot & Johannes Quaas Max-Planck-Institut für Meteorologie Hamburg, Germany.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
Synthetic satellite images based on COSMO Caroline Forster, Tobias Zinner with contributions from Christian Keil, Luca Bugliaro, Françoise Faure.
Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig.
Institut für Physik der Atmosphäre WG4: Data Assimilation and Predictability George C. Craig DLR-Institut für Physik der Atmosphäre.
Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields Yoav Yair 1, Barry Lynn 1, Colin Price 2,
Effects of Urban-Influenced Thunderstorms on Atmospheric Chemistry Kenneth E. Pickering Department of Meteorology University of Maryland HEAT Planning.
Institut für Physik der Atmosphäre ETReC 2007 Hans Volkert (for G. C. Craig) DLR-Institut für Physik der Atmosphäre.
Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch,
Deep Convecton and Lightning Ken Pickering – NASA/GSFC Chris Cantrell – NCAR Tropospheric Chemistry Future Activities Meeting March 8, 2007 Deep Convection.
Folie 1 Mature Convection: DLR activities presented by Caroline Forster DLR - Institute of Atmospheric Physics, Oberpfaffenhofen, Germany Convection Working.
Kick-Off-Treffen SPP, Bonn October 2006 Improved Water Vapour and Wind Initialisation for Precipitation Forecasts: Impact Studies with the ECMWF.
Importance of Lightning NO for Regional Air Quality Modeling Thomas E. Pierce/NOAA Atmospheric Modeling Division National Exposure Research Laboratory.
Thunderstorms and Tornadoes Last Lecture: We looked at severe weather events in the lower latitudes Principal weather event is the formation and movement.
WMO workshop, Hamburg, July, 2004 Some aspects of the STERAO case study simulated by Méso-NH by Jean-Pierre PINTY, Céline MARI Christelle BARTHE and Jean-Pierre.
Electricité atmosphérique et Production d’oxydes d’azote par les éclairs: Etat des lieux et perspectives Christelle Barthe 1 et Jean-Pierre Pinty Laboratoire.
Chapter 9: Weather Forecasting Surface weather maps 500mb weather maps Satellite Images Radar Images.
Bauru November 2004 Modelling interpretation of in situ H2O, CH4 and CO2 measured by  SDLA balloon borne instrument (SF2 and SF4 flights). N. Huret(1),G.
Edward Mansell National Severe Storms Laboratory Donald MacGorman and Conrad Ziegler National Severe Storms Laboratory, Norman, OK Funding sources in the.
Mesoscale Simulation of a Convective Frontal Passage Travis Swaggerty, Dorothea Ivanova and Melanie Wetzel Department of Applied Aviation Sciences Embry-Riddle.
Methods for Incorporating Lightning NO x Emissions in CMAQ Ken Pickering – NASA GSFC, Greenbelt, MD Dale Allen – University of Maryland, College Park,
Objective Evaluation of the Meso-NH Simulations during Hibiscus-Troccinox-Troccibras I.Forecasts for the TROCCINOX campaign II.Three case studies: 13 Feb,
Three real case simulations by Meso-NH validated against satellite observations J.-P. Chaboureau and J.-P. Pinty Laboratoire d’Aérologie, Toulouse 1.Elbe.
From Yamada, IORGC HyARC, Nagoya University CAMS GRL/ Pukyon Nat.Univ For 2008 Ground based observations (a lot of satellite data)
Toward a new parameterization of nitrogen oxides produced by lightning flashes in the WRF-AqChem model Christelle Barthe NCAR/ACD Previously at Laboratoire.
The Deep Convective Clouds and Chemistry (DC3) Field Experiment Mary C. Barth (NCAR), W. H. Brune (PSU), C. A. Cantrell (U. Colorado), S. A. Rutledge (CSU),
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
Lightning Mapping Technology & NWS Warning Decision Making Don MacGorman, NOAA/NSSL.
Remote sensing and modeling of cloud contents and precipitation efficiency Chung-Hsiung Sui Institute of Hydrological Sciences National Central University.
Case 5: Tracer Transport in Deep Convection STERAO-1996 From Dye et al. (2000)
The Water Cycle - Kickoff by Kevin Trenberth -Wide Ranging Discussion -Vapor -Precip/Clouds -Surface Hydrology (Land and Ocean) -Observations and scales.
Severe convection in Brazil Nikolai Dotzek, Hartmut Höller (DLR-IPA)
Tadashi Fujita (NPD JMA)
Meteosat Third Generation (MTG)
Center for Analysis and Prediction of Storms (CAPS) Briefing by Ming Xue, Director CAPS is one of the 1st NSF Science and Technology Centers established.
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Multiscale aspects of cloud-resolving simulations over complex terrain
Relationships inferred from AIRS-CALIPSO synergy
COPE: The COnvective Precipitation Experiment. Met Office interests
NOAA - LAPS Albers, S., 1995: The LAPS wind analysis. Wea. and Forecasting, 10, Albers, S., J. McGinley, D. Birkenheuer, and J. Smart, 1996:
Daniel Leuenberger1, Christian Keil2 and George Craig2
Visible Satellite, Radar Precipitation, and Cloud-to-Ground Lightning
The radiative properties of inhomogeneous cirrus clouds
Effects of 3D radiation on cloud evolution
The Impact of Moist Singular Vectors and Horizontal Resolution on Short-Range Limited-Area Ensemble Forecasts for Extreme Weather Events A. Walser1) M.
Presentation transcript:

Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling at the IPA-DLR: From lightning to aviation Thorsten Fehr et al. Institut für Physik der Atmosphäre Deutsches Zentrum für Luft- und Raumfahrt, DLR Oberpfaffenhofen, Allemange

Institut für Physik der Atmosphäre 2 Missions (I) Understanding the climate and how it is affected by aviation

Institut für Physik der Atmosphäre 3 Parameterization of Lightning Activity and NO x Motivation: Natural production and distribution of trace gases is poorly known as compared to air traffic and ground sources.  In particular nitrogen oxides (NO X ) from lightning (LNO X ) vs. air traffic in the upper troposphere Model Studies: Cloud Scale  Lightning parameterization based on model µ-physics (Barthe, Pinty) or cloud scale variables (Price and Rind, Fehr) Meso Scale/GCM  Lightning NO x parameterization based on convection parameterization (Pinty)

Institut für Physik der Atmosphäre 4 Parameterization of Lightning Activity and NO x ObservationsAircraft Aircraft: Trace gas µ-physics Aircraft: Trace gas µ-physics Lightning Aircraft: Trace gas µ-physics Lightning Radar Satellite Surface obs.

Institut für Physik der Atmosphäre 5 Parameterization of Lightning Activity and NO x Parameterization Lightning cell f cell =f cell (  i ) LNO X

Institut für Physik der Atmosphäre 6 Parameterization of Lightning Activity and NO x Simulation Total Condensed WaterLightning NO X J.-P. Chaboureau et al. for TROCCINOX-2, 2005

Institut für Physik der Atmosphäre 7 Challenges:  Modeled storm represents observations (radar, satellite) Cut-off bei 16 km Radar: TROCCINOX 04 Feb Parameterization of Lightning Activity and NO x

Institut für Physik der Atmosphäre 8 Challenges:  Modeled storm represents observations (radar, satellite)  Lightning parameterization (explicit electricity or bulk) represents local lightning distribution (VLF/LF, optical)  Location, IC/CG, intensity DLR LINET, 04 Feb 2005: LF lightning detection network IC strokes(51.420) CG strokes(82.462) Parameterization of Lightning Activity and NO x

Institut für Physik der Atmosphäre 9 Challenges:  Modeled storm represents observations (radar, satellite)  Lightning parameterization (explicit electricity or bulk) represents local lightning distribution (VLF/LF, optical)  Location, IC/CG, intensity  Very limited set of observations (trace gases, e.g. NO X ) from aircraft Falcon: ~ 7 anvil crossingsGeophysica: ~ 2 anvil dives Parameterization of Lightning Activity and NO x

Institut für Physik der Atmosphäre 10 Challenges:  Modeled storm represents observations (radar, satellite)  Lightning parameterization (explicit electricity or bulk) represents local lightning distribution (VLF/LF, optical)  Location, IC/CG, intensity  Very limited set of observations (trace gases, e.g. NO X ) from aircraft  Where and how to place aircraft observations in the model storm?  Extrapolation to flash, storm, regional or global production rates  Necessary to have a good estimate for the outflow regions  A sample of case studies necessary  Different climatic location Parameterization of Lightning Activity and NO x

Institut für Physik der Atmosphäre 11 Parameterization of Lightning Activity and NO x Institut für Physik der Atmosphäre/ Laboratoire d’Aérologie Simulation Tropics (s. Brazil)Mid-latitude (s. Germany)

Institut für Physik der Atmosphäre 12 Missions (II) Understanding the weather and how it affects aviation

Institut für Physik der Atmosphäre 13 Cross section along glideslope LM forecasting domainMM5 forecasting domain 1MM5 forecasting domain 2 Airport area3D view of storm crossing airport Forecasting for airports: model chain with nesting PI: Arnold Tafferner

Institut für Physik der Atmosphäre 14 Ensemble forecasts ranked by image matching Cluster 1 Rank: 9 Meteosat 7 IR, 9 July 2002 LM det Rank: 5 Cluster 3 Rank: 10Cluster 4 Rank: 1 COSMO-LEPS ensemble of 10 LM forecasts driven by clusters from ECMWF EPS PI: Christian Keil

Institut für Physik der Atmosphäre 15 PI: Andreas Dörnbrack Wind and divergence (1/s) 29 January UT Ellrod CAT Index ETI = VWS  [ DEF +CVG ] High-resolution weather simulations predict areas of Clear-Air Turbulence (CAT)

Institut für Physik der Atmosphäre 16 Translation of model variables (liquid water content) into radar observables (reflectivity) Verification of precipitation forecasts by polarimetric radar Improvement of the cloud physical parameterizations of numerical weather prediction models. SynPolRad Synthetic Polarimetric Radar Evaluating precipitation forecasts using polarimetric radar PI: Monika Pfeifer

Institut für Physik der Atmosphäre 17 Mixing in Cumulus Clouds Very high resolution simulations (<50m) show that to resolve a cumulus cloud, need to resolve the dominant eddy scale (set by the buoyancy and stratification). Vertical velocityRendering PI: George Craig

Institut für Physik der Atmosphäre 18 High-Resolution Modeling Challenge predictability of small-scale weather hazards Recent Successes high resolution cloud simulations (EULAG, MM5, LM, LM-K, MesoNH) wave breaking and Clear air turbulence (CAT) indices regional ensemble forecasts Future probabilistic convection forecasts climatology and validation of CAT predictions parameterisation of processes