Lecture 3 Universal TM. Code of a DTM Consider a one-tape DTM M = (Q, Σ, Γ, δ, s). It can be encoded as follows: First, encode each state, each direction,

Slides:



Advertisements
Similar presentations
Computing functions with Turing machines
Advertisements

David Evans cs302: Theory of Computation University of Virginia Computer Science Lecture 17: ProvingUndecidability.
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
Lecture 16 Deterministic Turing Machine (DTM) Finite Control tape head.
CS 461 – Nov. 9 Chomsky hierarchy of language classes –Review –Let’s find a language outside the TM world! –Hints: languages and TM are countable, but.
The Recursion Theorem Sipser – pages Self replication Living things are machines Living things can self-reproduce Machines cannot self reproduce.
Rice ’ s Theorem. Def: A property of the Turing-recognizable languages is simply a subset of all Turing- recognizable languages.
Turing -Recognizable vs. -Decidable
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
1 COMP 382: Reasoning about algorithms Unit 9: Undecidability [Slides adapted from Amos Israeli’s]
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
Computability and Complexity 4-1 Existence of Undecidable Problems Computability and Complexity Andrei Bulatov.
1 Introduction to Computability Theory Lecture14: Recap Prof. Amos Israeli.
1 Introduction to Computability Theory Lecture12: Reductions Prof. Amos Israeli.
1 Introduction to Computability Theory Lecture13: Mapping Reductions Prof. Amos Israeli.
Prof. Busch - LSU1 Decidable Languages. Prof. Busch - LSU2 Recall that: A language is Turing-Acceptable if there is a Turing machine that accepts Also.
Courtesy Costas Busch - RPI1 A Universal Turing Machine.
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata are like Turing Machines with a restriction: The working space of the tape is the space of the.
Fall 2004COMP 3351 Recursively Enumerable and Recursive Languages.
CS 302: Discrete Math II A Review. An alphabet Σ is a finite set (e.g., Σ = {0,1}) A string over Σ is a finite-length sequence of elements of Σ For x.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
Recursively Enumerable and Recursive Languages
1 Uncountable Sets continued Theorem: Let be an infinite countable set. The powerset of is uncountable.
Fall 2004COMP 3351 Reducibility. Fall 2004COMP 3352 Problem is reduced to problem If we can solve problem then we can solve problem.
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture 6 Decidability Jan Maluszynski, IDA, 2007
Homework #9 Solutions.
Fall 2005Costas Busch - RPI1 Recursively Enumerable and Recursive Languages.
Fall 2004COMP 3351 A Universal Turing Machine. Fall 2004COMP 3352 Turing Machines are “hardwired” they execute only one program A limitation of Turing.
Courtesy Costas Busch - RPI1 Reducibility. Courtesy Costas Busch - RPI2 Problem is reduced to problem If we can solve problem then we can solve problem.
Lecture 27UofH - COSC Dr. Verma 1 COSC 3340: Introduction to Theory of Computation University of Houston Dr. Verma Lecture 27.
CS21 Decidability and Tractability
Prof. Busch - LSU1 Reductions. Prof. Busch - LSU2 Problem is reduced to problem If we can solve problem then we can solve problem.
1 Introduction to Computability Theory Lecture11: The Halting Problem Prof. Amos Israeli.
1 Reducibility. 2 Problem is reduced to problem If we can solve problem then we can solve problem.
Chapter 4: A Universal Program 1. Coding programs Example : For our programs P we have variables that are arranged in a certain order: Y 1 X 1 Z 1 X 2.
Lecture 18 Various TMs. Allow the head not move Theorem. If the head is allowed to stay at the cell in each move, then every function computed by the.
The Halting Problem – Undecidable Languages Lecture 31 Section 4.2 Wed, Oct 31, 2007.
1 Undecidability Reading: Chapter 8 & 9. 2 Decidability vs. Undecidability There are two types of TMs (based on halting): (Recursive) TMs that always.
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 15-1 Mälardalen University 2012.
A Universal Turing Machine
CS 3813: Introduction to Formal Languages and Automata Chapter 12 Limits of Algorithmic Computation These class notes are based on material from our textbook,
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference: The input string tape space is the.
1 Turing’s Thesis. 2 Turing’s thesis: Any computation carried out by mechanical means can be performed by a Turing Machine (1930)
 2005 SDU Lecture13 Reducibility — A methodology for proving un- decidability.
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture 7 Undecidability cont. Jan Maluszynski, IDA, 2007
CS 461 – Nov. 7 Decidability concepts –Countable = can number the elements  –Uncountable = numbering scheme impossible  –A TM undecidable –Language classes.
Lecture 21 Reducibility. Many-one reducibility For two sets A c Σ* and B c Γ*, A ≤ m B if there exists a Turing-computable function f: Σ* → Γ* such that.
Recursively Enumerable and Recursive Languages
1 Recursively Enumerable and Recursive Languages.
Recursively Enumerable and Recursive Languages. Definition: A language is recursively enumerable if some Turing machine accepts it.
1 A Universal Turing Machine. 2 Turing Machines are “hardwired” they execute only one program A limitation of Turing Machines: Real Computers are re-programmable.
A Universal Turing Machine
Recursively Enumerable and Recursive Languages
Busch Complexity Lectures: Reductions
Reductions Costas Busch - LSU.
MCC 2093 Advanced Theoretical Computer Science
CS154, Lecture 10: Rice’s Theorem, Oracle Machines
Busch Complexity Lectures: Undecidable Problems (unsolvable problems)
CS154, Lecture 10: Rice’s Theorem, Oracle Machines
CSCI 2670 Introduction to Theory of Computing
Decidable Languages Costas Busch - LSU.
Decidability and Undecidability
Undecidable problems:
CS21 Decidability and Tractability
Proposed in Turing’s 1936 paper
Formal Languages, Automata and Models of Computation
CS21 Decidability and Tractability
CSCI 2670 Introduction to Theory of Computing
CS6382 Theory of Computation
More Undecidable Problems
Presentation transcript:

Lecture 3 Universal TM

Code of a DTM Consider a one-tape DTM M = (Q, Σ, Γ, δ, s). It can be encoded as follows: First, encode each state, each direction, and each symbol into a natural number (code(B) = 0, code(R) =1, code(L) = 2, code(s)=3, code(h)=4,... ). Then encode each transition δ(q, a) = (p, b, D) into a string qapbD

The code of M is obtained by combining all codes code i of transitions together: 111code 1 11code 2 11∙∙∙11code m 111. Remark: Each TM has many codes. All codes of TMs form a Turing-decidable language.

Universal DTM One can design a three-tape DTM M* which behaves as follows: On input, M* first decodes M on the second tape and then simulates M on the output tape. Clearly, L(M*) = { | x ε L(M)}. Thus, Theorem 1. { | x ε L(M)} is Turing- acceptable.

Next, we prove Theorem 2. { | x ε L(M)} isn't Turing-decidable. To do so, we consider A = { M | M accepts M} and prove Lemma. A isn't Turing-decidable.

Barber cuts his own hair Class 1: {Barber | he can cut his own hair} Class 2: {Barber | he cannot cut own hair} Question: Is there a barber who cuts hair of everybody in class 2, but not cut hair of anybody in class 1. Answer: No!!! Proof. Suppose such a barber exists. If he cuts his own hair, then he is in class 1 and hence he cannot cut his own hair, a contradiction.

If he cannot cut his own hair, then he belongs to class 2 and hence he can cut his own hair, a contradiction. This argument is called diagonalization. hair barber

Example. There exists an irrational number. Proof. Consider all rational numbers in (0,1). They are countable, a1, a2, …. Now, we construct a number such that its i-th digit is different from the i-th digit of ai. Then this number is not rational. a1 a2 digits

Proof. For contradiction, suppose that A is accepted by a one-tape DTM M’. We look at M’ on input M’. If M’ accepts M’, then M’ is in A, which means that M’ rejects M’, a contradiction. If M’ rejects M’, then M’ isn’t in A which means that M’ accepts M’, a contradiction.

Many-one reduction Consider two sets A c Σ* and B c Γ*. If there exists a Turing-computable total function f : Σ* → Γ* such that x ε A iff f(x) ε B, then we say that A is many-one reducible to B, and write A ≤ m B.

A = { M | M accepts M} B = { | M accepts x} Claim. A ≤ m B. Proof. Define f(M) =. M ε A iff M accepts M iff ε B

Theorem. A ≤ m B, B ≤ m C imply A ≤ m C. (This means that ≤ m is a partial ordering.) Theorem. If A ≤ m B and B is Turing- decidable, then A is Turing-decidable. By this theorem, { | M accepts x} isn’t Turing-decidable.

Complete in r. e. An r. e. set A is complete in r. e. if for every r. e. set B, B ≤ m A.

Halting problem Theorem. K = { | M accepts x } is complete in r. e.. Proof. (1) K is a r. e. set. (2) For any r. e. set A, there exists a DTM M A such that A = L(M A ). For every input x of M A, define f(x) =. Then x ε A iff f(x) ε K.

Halting problem Theorem. K = { | M accepts x } is complete in r. e.. Proof. (1) K is a r. e. set. (2) For any r. e. set A, there exists a DTM M A such that A = L(M A ). For every input x of M A, define f(x) =. Then x ε A iff f(x) ε K.

Nonempty Nonempty = {M | L(M) ≠ Φ } is complete in r. e. Proof. (1) Nonempty is a r. e. set. Construct a DTM M* as follows: For each M, we may try every input of M, one by one. If M accepts an input, then M is accepted by M*.

(2) K ≤ m Nonempty. Suppose M’ is a DTM accepting every input. For each input of K, we define f( ) = M where M is a DTM working as follows: on an input y, Step 1. M simulates M on input x. If M accepts x, then go to Step 2. Step 2. M simulates M’ on input y

Therefore, ε K => M accepts x => M accepts every input y => f( ) = M ε Nonempty not in K => M doesn’t halt on x => M doesn’t halt on y => L(M ) = Φ => f( ) not in Nonempty

r. e. –hard A set B is r. e.-hard if for every r. e. set A, A ≤ m B Remark Every complete set is r. e.-hard. However, not every r. e.-hard set is complete. Every r. e.-hard set is not recursive.

All = {M | M accepts all inputs} All is r. e. hard. All is not r. e. All is not complete.

All = {M | M accepts all inputs} All is r. e. hard. All is not r. e. All is not complete.

r. e. property A subset P of TM codes is called a r. e. property if M ε P and L(M’) = L(M) imply M’ ε P. e.g., Nonempty, Empty, All are r. e. properties. Question: Give an example which is a subsets of TM codes, but not a r. e. property.

Nontrivial A r. e. property is trivial if either it is empty or it contains all r. e. set.

Rice Theorem 1 Every nontrivial r. e. property is not recursive.

Proof Let P be a nontrivial r. e. property. For contradiction. Suppose P is a recursive set. So is its complement. Note that either P or its complement P does not contains the empty set. Without loss of generality, assume that P does not contains the empty set.

Since P is nontrivial, P contains a nonempty r. e. set A. Let Ma be a TM accepting A, i.e., A=L(Ma). We want to prove K ≤m P. For each input of K, we define f( ) = M where M is a DTM working as follows. For each input y of M, it first goes to Step 1.

Step 1. M simulates M on input x of M. If M accepts x, then go to Step 2. Step 2. M simulates Ma on y. If Ma accepts y, then M accepts y. Therefore, if ε K then L(M ) = L(Ma) = A ε P, and if not in K, then L(M ) = Φ not in P

Since K is not recursive and K ≤ m P, we obtain a contradiction. Recursive = {M | L(M) is recursive} is not recursive. RE = {M | L(M) is r. e.} is trivial.

Question: Is K an r. e. property? Is every r. e. property complete? Is it true that for any r. e. property, either it or its complement is complete?

Rice Theorem 2 A r. e. property P is r. e. iff the following three conditions hold: (1)If A ε P and A c B for some r. e. set B, then B ε P. (2) If A is an infinite set in P, then A has a finite subset in P. (3) The set of finite languages in P is enumerable, in the sense that there is a TM that generates the (possibly) infinite string code1#code2# …, where code i is a code for the ith finite languages in P.

The code for the finite language {w 1, w 2, …, w n } is [w 1,w 2,…,w n]. In other words, there exists an r. e. set B that is a subset of codes of finite languages in P such that for every finite language F in P, B contains at least one code of F.

Examples All is not r. e. because All does not satisfy condition (2). The complement of ALL is not r. e. because it does not satisfy condition (1). Empty is not r. e. because it does not satisfy (1) Nonempty is r. e. because it satisfies (1), (2) and (3).

Undecidable Problems

Given TMs M and M’, is it true that L(M)=L(M’)? This problem is undecidable, i.e., A = { | L(M) = L(M’)} is not recursive. Proof. Empty ≤ m A. Let M o be a fixed TM such that L(M o ) = Φ. Define f(M) =. Then, M ε Empty iff ε A.

Let A and B be two nonempty proper subsets of Σ*. If A B and B A are recursive, then A ≤ m B. Proof. Let y ε B and z ε B. Define y if x ε A B f(x) = z if x ε B A x, otherwise

Research Problem For a DFA M=(Q, Σ, δ, s, F), L(M) = L(M*) where M* = (Q, Σ, δ, s, Q-F). Given a DTM M, could we have an algorithm to compute a DTM M* such that L(M*) = L(M) when L(M) is regular, and M* will not halt when L(M) is not regular?

Proof of Hierarchy Theorems Diagonalization

Proof of Hierarchy Theorems

Space-constructible function s(n) is fully space-constructible if there exists a DTM M such that for sufficiently large n and any input x with |x|=n, Space M (x) = s(n).

Space Hierarchy If s 2 (n) is a fully space-constructible function, s 1 (n)/s 2 (n) → 0 as n → infinity, s 1 (n) > log n, then DSPACE(s 2 (n)) DSPACE(s 1 (n)) ≠ Φ