1 Genetic Algorithms Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.

Slides:



Advertisements
Similar presentations
Logical and Artificial Intelligence in Games Lecture 14
Advertisements

Genetic Algorithms Chapter 3. A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms GA Quick Overview Developed: USA in.
© Negnevitsky, Pearson Education, Lecture 12 Hybrid intelligent systems: Evolutionary neural networks and fuzzy evolutionary systems Introduction.
Algorithm Design Techniques
1 Tabu Search Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.
Population-based metaheuristics Nature-inspired Initialize a population A new population of solutions is generated Integrate the new population into the.
Local Search Algorithms
Genetic Algorithm.
Constraint Optimization We are interested in the general non-linear programming problem like the following Find x which optimizes f(x) subject to gi(x)
Using Parallel Genetic Algorithm in a Predictive Job Scheduling
Genetic Algorithms Contents 1. Basic Concepts 2. Algorithm
Tuesday, May 14 Genetic Algorithms Handouts: Lecture Notes Question: when should there be an additional review session?
1 IOE/MFG 543 Chapter 14: General purpose procedures for scheduling in practice Section 14.5: Local search – Genetic Algorithms.
1 Lecture 8: Genetic Algorithms Contents : Miming nature The steps of the algorithm –Coosing parents –Reproduction –Mutation Deeper in GA –Stochastic Universal.
COMP305. Part II. Genetic Algorithms. Genetic Algorithms.
Evolutionary Computational Intelligence
Data Mining CS 341, Spring 2007 Genetic Algorithm.
Genetic Algorithm for Variable Selection
EAs for Combinatorial Optimization Problems BLG 602E.
Intro to AI Genetic Algorithm Ruth Bergman Fall 2002.
7/2/2015Intelligent Systems and Soft Computing1 Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Introduction,
Intro to AI Genetic Algorithm Ruth Bergman Fall 2004.
Chapter 6: Transform and Conquer Genetic Algorithms The Design and Analysis of Algorithms.
Genetic Algorithm.
© Negnevitsky, Pearson Education, CSC 4510 – Machine Learning Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University.
SOFT COMPUTING (Optimization Techniques using GA) Dr. N.Uma Maheswari Professor/CSE PSNA CET.
Intro. ANN & Fuzzy Systems Lecture 36 GENETIC ALGORITHM (1)
Optimization in Engineering Design Georgia Institute of Technology Systems Realization Laboratory Mixed Integer Problems Most optimization algorithms deal.
Zorica Stanimirović Faculty of Mathematics, University of Belgrade
Genetic Algorithms Michael J. Watts
Genetic algorithms Charles Darwin "A man who dares to waste an hour of life has not discovered the value of life"
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
1 Simulated Annealing Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.
1 Chapter 14 Genetic Algorithms. 2 Chapter 14 Contents (1) l Representation l The Algorithm l Fitness l Crossover l Mutation l Termination Criteria l.
© Negnevitsky, Pearson Education, Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Introduction,
1 Genetic Algorithms K.Ganesh Introduction GAs and Simulated Annealing The Biology of Genetics The Logic of Genetic Programmes Demo Summary.
Genetic Algorithms What is a GA Terms and definitions Basic algorithm.
ECE 103 Engineering Programming Chapter 52 Generic Algorithm Herbert G. Mayer, PSU CS Status 6/4/2014 Initial content copied verbatim from ECE 103 material.
Probabilistic Algorithms Evolutionary Algorithms Simulated Annealing.
Chapter 12 FUSION OF FUZZY SYSTEM AND GENETIC ALGORITHMS Chi-Yuan Yeh.
Genetic Algorithms. The Basic Genetic Algorithm 1.[Start] Generate random population of n chromosomes (suitable solutions for the problem) 2.[Fitness]
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Power of Heuristic; non- conventional search.
Waqas Haider Bangyal 1. Evolutionary computing algorithms are very common and used by many researchers in their research to solve the optimization problems.
Heuristic Methods for the Single- Machine Problem Chapter 4 Elements of Sequencing and Scheduling by Kenneth R. Baker Byung-Hyun Ha R2.
GENETIC ALGORITHM Basic Algorithm begin set time t = 0;
D Nagesh Kumar, IIScOptimization Methods: M8L5 1 Advanced Topics in Optimization Evolutionary Algorithms for Optimization and Search.
Local Search. Systematic versus local search u Systematic search  Breadth-first, depth-first, IDDFS, A*, IDA*, etc  Keep one or more paths in memory.
1 Simulated Annealing Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.
1 Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations Genetic Algorithm (GA)
Genetic Algorithms. Underlying Concept  Charles Darwin outlined the principle of natural selection.  Natural Selection is the process by which evolution.
Genetic Algorithm Dr. Md. Al-amin Bhuiyan Professor, Dept. of CSE Jahangirnagar University.
Agenda  INTRODUCTION  GENETIC ALGORITHMS  GENETIC ALGORITHMS FOR EXPLORING QUERY SPACE  SYSTEM ARCHITECTURE  THE EFFECT OF DIFFERENT MUTATION RATES.
1 Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations Simulated Annealing (SA)
Artificial Intelligence By Mr. Ejaz CIIT Sahiwal Evolutionary Computation.
Overview Last two weeks we looked at evolutionary algorithms.
Genetic Algorithms. Solution Search in Problem Space.
Genetic Algorithms An Evolutionary Approach to Problem Solving.
Genetic Algorithms And other approaches for similar applications Optimization Techniques.
Genetic Algorithm(GA)
1 Genetic Algorithms Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations.
General Purpose Procedures Applied to Scheduling
Genetic Algorithms.
Evolutionary Algorithms Jim Whitehead
School of Computer Science & Engineering
Artificial Intelligence (CS 370D)
CS621: Artificial Intelligence
General Purpose Procedures Applied to Scheduling
Steady state Selection
Population Based Metaheuristics
GA.
Presentation transcript:

1 Genetic Algorithms Contents 1. Basic Concepts 2. Algorithm 3. Practical considerations

2 Literature 1. Modern Heuristic Techniques for Combinatorial Problems, (Ed) C.Reeves 1995, McGraw-Hill. Chapter Operations Scheduling with Applications in Manufacturing and Services, Michael Pinedo and Xiuli Chao, McGraw Hill, 2000, Chapter 3.7. or Scheduling, Theory, Algorithms, and Systems, Second Addition, Michael Pinedo, Prentice Hall, 2002, Chapter 14.5

3 Basic Concepts Individuals (or members of population or chromosomes) individuals surviving from the previous generation + children generation Simulated Annealing Tabu Search versus Genetic Algorithms a single solution is carried over from one iteration to the next population based method

4 Fitness of an individual (a schedule) is measured by the value of the associated objective function Representation Example. the order of jobs to be processed can be represented as a permutation: [1, 2,...,n] Initialisation How to choose initial individuals? High-quality solutions obtained from another heuristic technique can help a genetic algorithm to find better solutions more quickly than it can from a random start.

5 Reproduction Crossover: combine the sequence of operations on one machine in one parent schedule with a sequence of operations on another machine in another parent. Example 1. Ordinary crossover operator is not useful! Cut Point 1Cut Point 2 P1 = [ ] P2 = [ ] O1 = [ ] O2 = [ ] Cut Point P1 = [ ] P2 = [ ] O1 = [ ] O2 = [ ] Example 2. Partially Mapped Crossover 314255314255

6 Example 3. Preserves the absolute positions of the jobs taken from P1 and the relative positions of those from P2 Cut Point 1 P1 = [ ] P2 = [ ] O1 = [ ] O2 = [ ] Example 4. Similar to Example 3 but with 2 crossover points. Cut Point 1Cut Point 2 P1 = [ ] P2 = [ ] O1 = [ ]

7 Mutation enables genetic algorithm to explore the search space not reachable by the crossover operator. Adjacent pairwise interchange in the sequence [1,2,...,n][2,1,...,n] Exchange mutation: the interchange of two randomly chosen elements of the permutation Shift mutation: the movement of a randomly chosen element a random number of places to the left or right Scramble sublist mutation: choose two points on the string in random and randomly permuting the elements between these two positions.

8 Selection Roulette wheel: the size of each slice corresponds to the fitness of the appropriate individual. slice for the 1st individual slice for the 2nd individual selected individual Steps for the roulette wheel 1. Sum the fitnesses of all the population members, TF 2. Generate a random number m, between 0 and TF 3. Return the first population member whose fitness added to the preceding population members is greater than or equal to m

9 Tournament selection 1. Randomly choose a group of T individuals from the population. 2. Select the best one. How to guarantee that the best member of a population will survive? Elitist model: the best member of the current population is set to be a member of the next.

10 Algorithm Step 1. k=1 Select N initial schedules S 1,1,..., S 1,N using some heuristic Evaluate each individual of the population Step 2. Create new individuals by mating individuals in the current population using crossover and mutation Delete members of the existing population to make place for the new members Evaluate the new members and insert them into the population S k+1,1,..., S k+1,N Step 3. k = k+1 If stopping condition = true then return the best individual as the solution and STOP else go to Step 2

11 Example 1 ||  T j Population size: 3 Selection: in each generation the single most fit individual reproduces using adjacent pairwise interchange chosen at random there are 4 possible children, each is chosen with probability 1/4 Duplication of children is permitted. Children can duplicate other members of the population. Initial population: random permutation sequences

12 Generation 1 Individual Cost Selected individual: with offspring 13245, cost 20 Generation 2 Individual Cost * Average fitness is improved, diversity is preserved Selected individual: with offspring 12354, cost 17 Generation 3 Individual Cost Selected individual: with offspring 12435, cost 11

13 Generation 4 Individual Cost Selected individual: This is an optimal solution. Disadvantages of this algorithm: Since only the most fit member is allowed to reproduce (or be mutated) the same member will continue to reproduce unless replaced by a superior child.

14 Practical considerations Population size: small population run the risk of seriously under-covering the solution space, while large populations will require computational resources. Empirical results suggest that population sizes around 30 are adequate in many cases, but are more common. Mutation is usually employed with a very low probability.

15 Summary * Meta-heuristic methods are designed to escape local optima. * They work on complete solutions. However, they introduce parameters (such as temperature, rate of reduction of the temperature, memory,...) How to choose the parameters?