Telekommunikation, Kiruna

Slides:



Advertisements
Similar presentations
GSM Receiver Key Parameters
Advertisements

Chapter 5 Analog Transmission.
1. Introduction.
Who Wants To Be A Millionaire? Decimal Edition Question 1.
Pulse Code Modulation Pulse Code Modulation
(Data and Signals - cont)
EET260: A/D and D/A conversion
Physical Media PHYSICAL MEDIA.
Cisco CCNA Sem 1 Chapter 4 Cable Testing, Cabling LAN’s and WAN’s
Physical Media PHYSICAL MEDIA.
Faculty of Computer Science & Engineering
Logarithms Log Review. Logarithms For example Logarithms.
Basic Concepts Definition of modulation
Satellite Link Design.
TVS, By Ya Bao 1 AMPLITUDE MODULATION 1.DEFINING AM A carrier frequency whose amplitude is varied in proportion to the instantaneous amplitude of a modulating.
Units of Power and Comparison
Radio Frequency Spectrum
RF Fundamentals Lecture 3.
©2005, The Aerospace Corporation, All Rights Reserved 1 Satellite TT&C Denial, Electronic Counter Measure and Mitigation.
11th February 2000 BFWAtg(00)12. Structure of the presentation u Study objective and approach u BFWA characteristics u Interference analysis (worst case)
and M-ary Quadrature Amplitude Modulation (M-QAM)
Lecture 11: Satellite Communication Anders Västberg Slides are a selection from the slides from chapter 9 from:
Chapter : Digital Modulation 4.2 : Digital Transmission
Datornätverk A – lektion 3 MKS B – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission.
Datornätverk A – lektion 3  Kapitel 3: Fysiska signaler.  Kapitel 4: Digital transmission.
Wireless Transmission Fundamentals (Physical Layer) Professor Honggang Wang
Lab 3 Antennas.
Chapter 3 Data and Signals
Summary of Path Loss in Propagation
Communications - Access Schemes 1 Introduction to Space Systems and Spacecraft Design Space Systems Design.
Lect 05© 2012 Raymond P. Jefferis III1 Satellite Communications Link budget analysis Transmitted power Transmitting antenna gain Path loss Receiving antenna.
Radio Frequency Communications
SATELLITE LINK DESIGN By S.Sadhish Prabhu.
ECE 5233 Satellite Communications
2.4-GHZ RF TRANSCEIVER FOR IEEE B WIRELESS LAN UF# UF#
ECE 5233 Satellite Communications
VSOP-2 Ground Link Station - Tracking Station Requirements - National Astronomical Observatory of Japan Y. Kono.
Satellite Microwave MMG Rashed Sr. Lecturer, Dept. of ETE Daffodil International University.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
1 EE 499 Wireless Communications Project by Team 4: Arati NagarkarHemant Samtani Supriya HerwadkarChinmay Shete Shivani KaushalSalil Sawhney.
Copyright 2002, S.D. Personick. All Rights Reserved.1 Telecommunications Networking II Topic 13 Broadcast Technology and Applications Dr. Stewart D. Personick.
ECE 4710: Lecture #36 1 Chapter 8  Chapter 8 : Wired and Wireless Communication Systems  Telephone  Fiber Optic  DSL  Satellite  Digital & Analog.
Dept. of EE, NDHU 1 Chapter Five Communication Link Analysis.
ECE 4710: Lecture #41 1 Link Budget Example  Hughes Digital Satellite System (DSS)  Brandname is “DirecTV”  More than 220 TV channels  Two broadcast.
Network Kernel Architectures and Implementation ( ) Physical Layer
SWE-DISH SATELLITE SYSTEMS
RF Propagation No. 1  Seattle Pacific University Basic RF Transmission Concepts.
Basic Satellite Communication (3) Components of Communications Satellite Dr. Joseph N. Pelton.
Design WLAN Politeknik Telkom Design WLAN Step to design WLAN : 1. Location Survey 2. Topology 3. Distance calculating 4. Antenna design 5. Towering.
Low - Rate Information Transmission (LRIT) Downlink and Reception Satellite Direct Readout Conference for the Americas Frank Eng, Computer Sciences Corp.
Advanced Computer Networks
8.5 SATELLITE COMMUNICATIONS
 This chapter describes how the link- power budget calculations are made.  In this text [square] bracket are used to denote decibel quantities using.
Fundamentals of Communications. Communication System Transmitter: originates the signal Receiver: receives transmitted signal after it travels over the.
CS 414 Indian Institute of Technology, Bombay CS 414 Signals & Transmission Wireless Propagation.
Datornätverk A – lektion 3 MKS B – lektion 3
EARTH SEGMENT & SPACE LINK
Repetition kapitel 5: Modem. Shannons regel.
Radio Propagation.
CT-474: Satellite Communications
A study on the coexistence between Direct Air to Ground Communication (DA2GC) and Radars in the 5 GHz band Peter Trommelen, Rob van Heijster,
Satellite uplink and downlink Analysis and Design
Satellite Communications Engineering
Net425:Satellite Communications
Net425:Satellite Communications
Communication Systems.
Telecommunications Engineering Topic 2: Modulation and FDMA
CAY link Station for VSOP-2 Satellite down-link budget and Status
CT-474: Satellite Communications
Logarithms Log Review.
Presentation transcript:

Telekommunikation, Kiruna F1_ A Hz, kHz, MHz, GHz ?? mm, cm, m, km ?? W, mW, W, kW, MW ?? bit/s, kBit/s, Mbit/s, Gbit/s ?? bit/Hz, W/Hz ?? F1_A-be

INFORMATION KODNING MODULATION KANALER Symboler Tid Tid F1_A-be

Information Kodning Modulation Kanal Information Av-Kodning De-Modulation F1_A-be

Digital De-Modulation Information Käll- Kodning Kanal- Kodning Digital Modulation Information Kanal Käll- avkodning Kanal- avkodning Digital De-Modulation Information F1_A-be

Analog Digital Information Käll- Kodning Digitalisera ” ADC ” 0110001 F1_A-be

s='abba'; %Information som tecken tmp1=double(s); %Information i decimal form tmp2=dec2bin(tmp1,8); %Information i binär form tmp3=tmp2(:)'; %Allt på 1 rad tmp1,tmp2,tmp3 MATLAB- exempel tmp1 = 97 98 98 97 tmp2 = 01100001 01100010 tmp3 = 00001111111100000000000001101001 F1_A-be

MATLAB- exempel %Sampla analog signal %och diskretisera med 4 bitar ( 16 nivåer ) Fs=1000; %Samplingsfrekvens Dt=1/Fs; %Sampelintervall N=100; %Antal sampel t=0:Dt:Dt*(N-1); %Tidsvektor %Testsignal: x1=127+50*sin(2*pi*100*t)+25*cos(2*pi*75*t); xb1=dec2bin(x1,8); %Diskretsera med 8 bitar [rad,kolumn]=size(xb1); for r=1:rad xb1(r,5:8)=0; %Radera bit 5 till 8, högerskift 4 steg end x2=16*bin2dec(xb1); %Kompensera för skiftet plot(x1,':k'); %Plotta testsignal hold; plot(x1,'ro'); stairs(x2,'k'); %Plotta diskretiserad signal, obs Stairs! MATLAB- exempel F1_A-be

Analog signal digitaliserad med 8 bitar ( 28 = 256 nivåer ) 1010 0100 F1_A-be

Analog signal digitaliserad med 4 bitar ( 28 = 16 nivåer ) 1010 0000 F1_A-be

Down-link channel noise Tx hardware Coder Interleaver Modulator Up-link channel noise Satellit Down-link channel noise De- Coder De- Interleaver De- Modulator Rx hardware F1_A-be

Earth station: Up path losses: Satellite: Link parameters: F1_A-be Transmit Power (W) 10 Antenna diameter (m) 2 Antenna efficiency (%) 55 3-dB beamwidth (0) 1.9 Transmit gain (dBi) 28.6 Transmit EIRP (dBW) 38.6 Up path losses: Transmit frequency (GHz) 6.0 Transmission distance (km) 38000 Free space loss (dB) -199.6 Atmospheric attenuation (dB) 0.3 Satellite: Received power fluxdensity(dBW/m2) -124 Link parameters: C/N (dB) 14.3 Link margin (dB) 6.2 F1_A-be

dB eller decibel F1_A-be

G > 0 ”Gain” ( Förstärkning ) G < 0 ”Attenuation” ( Dämpning ) IN-signal=Xreferens UT- signal=X G G > 0 ”Gain” ( Förstärkning ) G < 0 ”Attenuation” ( Dämpning ) 1 Volt G1=20 dB G2= -6 dB ? ? F1_A-be

INFORMATION: BILD LJUD EKONOMISKA DATA HUR KODA INFORMATIONEN ? LOSSLESS LOSSY ? MP3 ? F1_A-be

KÄLL-KODNING Käll- symbol xi Sanno- likhet P(xi) Kod- ord Exempel I: Käll- symbol xi Sanno- likhet P(xi) Kod- ord Ord- längd li P(xi)*li AA 0.81 00 2 1.62 AB 0.09 01 0.18 BA 10 0.10 BB 0.01 11 0.02 F1_A-be

KÄLL-KODNING Käll- symbol xi Sanno- likhet P(xi) Kod- ord Exempel II: Käll- symbol xi Sanno- likhet P(xi) Kod- ord Ord- längd li P(xi)*li AA 0.81 1 AB 0.09 10 2 0.18 BA 110 3 0.27 BB 0.01 111 0.03 F1_A-be

Ett meddelande på 1000 symboler kräver i snitt 810*1+90*2+90*3+10*3=1290 bitar i exempel II och 1000*2=2000 bitar i exempel I Vilket fall, I eller II verkar bäst ? Vad innebär redundans ? F1_A-be

KANAL-KODNING Ett exempel: 000 001 010 011 100 101 000 110 000 111 1 1 000 111 000 111 1 Sänd Data Kodad Data Avkodad Mottaget Data Data Kanal F1_A-be

MODULATION BASBANDS-MODULATION BÄRVÅGS- MODULATION F1_A-be

MODULATION Analog Information Digital Information 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 F1_A-be

Några termer att förklara: Basband________________________________ Digital Information 0 1 0 0 1 0 1 0 0 1 Några termer att förklara: Basband________________________________ RZ ________________________________ NRZ ________________________________ F1_A-be

DE-MODULATION Analog Information Digital Information 0 1 0 0 1 0 1 0 0 1 F1_A-be

DE-MODULATION 0 1 0 0 1 F1_A-be

BÄRVÅGS- DE-MODULATION BÄRVÅGS-MODULATION Basband RF-band 0 fcarrier Frekvens f BÄRVÅGS- DE-MODULATION F1_A-be

VARFÖR MODULERA ? Antennerna Frekvensmultiplex Mediets egenskaper F1_A-be

KANAL=MEDIUM ”KOPPAR” FRI RYMD OPTISK FIBER ... r(t) s(t) Linjärt filter h(t) n(t) r(t)=s(t)*h(t)+n(t) F1_A-be

Typisk KANAL-störning Gaussisk slump-variabel: σ = varians, µ = medelvärde f(x) x F1_A-be

”AWGN”-KANAL ( Additive White Gaussian Noise, finns lika starkt på alla frekvenser ) ) N [watt/Hz] Frekvens W N*W [watt] Obs att vår kommunikationskanal har en begränsad bandbredd = W F1_A-be

Nästan Hela Telekomkursen i ett exempel: ( Utan bärvågsmodulation ) Källkodare Interleaving Kanalkodare Modulation s s1 s2 s3 y n (brus) Kanal Deinterleaving Kanalavkodare Demodulation Källavkodare shat s1hat s2hat y s3hat yn F1_A-be

s =Telecommunications! F1_A-be

1 1 0 1 1 1 1 0 y ( endast 1:a tecknet ) Tid 1 1 0 1 1 1 1 0 Vad skiljer 0:or och 1:or åt i figuren ? F1_A-be

Bit 1 Bit 3 1: 0: F1_A-be

yn ( endast 1:a tecknet ) 1 1 0 1 1 1 1 0 F1_A-be

shat = Tenecommunicationó! s = Telecommunications! Resultat: 2 tecken av 19 överfördes felaktigt. 2 bitar av 152 överfördes felaktigt. Bit Error Rate (BER) = 2/152 = 1.3% Letter Error Rate = 2/19 = 10.5% F1_A-be