1 Can a smog chamber be used to explain why polar bears have 8.6 ng/g of perfluoro octanoic acid in their body? Ole John Nielsen Department of Chemistry.

Slides:



Advertisements
Similar presentations
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Advertisements

SAFEFOODERA Stakeholder Group meeting with industry Copenhagen, December 2006.
Ph. D. Completion and Attrition: Baseline Program Data
Web Design Issues in a Business Establishment Panel Survey Third International Conference on Establishment Surveys (ICES-III) June 18-21, 2007 Montréal,
Prioritized Sites for Amphipod TIE Study Identify 12 potentially toxic inter-tidal sites Sample four sites at a time to find two suitable sites for amphipod.
The National Standards and Quality System Jean-Louis Racine The World Bank Cambridge, England April 19, 2007 Knowledge Economy Forum VI Technology Acquisition.
Woo-jin Jung Ministry of Construction & Transportation Republic of Korea Implementation of SDoC in Koreas Automotive Sector March 21, 2005.
Carbon Dioxide Emissions Costs and Electricity Resource Planning New Mexico Public Regulation Commission Case No UT March 28, 2007 Presented.
1 Consumer Exposure Assessment at the U.S. Environmental Protection Agency: A ccomplishments and Opportunities for Global Collaboration Thomas Brennan.
MARINTEK 1 Assessment of CO 2 emission performance of individual ships: The IMO CO 2 index Øyvind Buhaug MARINTEK.
Copyright © 2012 California Department of Education, Child Development Division with WestEd Center for Child & Family Studies, Desired Results T&TA Project.
Human Performance Improvement Process
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Session I Chapters 1-5 Presented by… Lynn Boyer, Ph.D.
The California Global Warming Solutions Act of 2006 (AB32) The California Global Warming Solutions Act of 2006 (AB32) California Council on Science and.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
1 Dealing with Climate Change Dr Jan Wright Parliamentary Commissioner for the Environment.
Responsible Care and its relation to Global Product Strategy.
U.S. Food and Drug Administration Notice: Archived Document The content in this document is provided on the FDAs website for reference purposes only. It.
Negotiating With Influence & Persuasion
Perspectives from EPA’s Endocrine Disruptor Screening Program
Assembly Bill 1879 (2008) - required DTSC to adopt regulations establishing a process to: 1.Identify and prioritize chemicals in consumer products with.
Clean Air Interstate Rule (CAIR) CAIR Requirements for SIPs Office of Air and Radiation March 2005.
Office of New Animal Drug Evaluation Laura L. Hungerford, DVM, MPH, PhD Senior Advisor, Science and Policy, ONADE Professor, University of Maryland School.
Determining the Significant Aspects
Environmental Management Systems Refresher
GHS Implementation in Indonesia
Southeastern Association of Educational Opportunity Program Personnel 38 th Annual Conference January 30 – February 3, 2010 Upward Bound Internal & External.
March, 2009 An Overview of the Chemicals Management Plan.
Consultation with Stakeholders on Perfluorooctanoic Acid (PFOA) and Long-Chain Perfluorocarboxylic Acids (PFCAs) Presented by the New Brunswick Lung Association.
1 CHOBIC Project and Reports February, Outline C-HOBIC project Reports Utilization of Reports.
Federal Energy and Environmental Regulation Agencies and Laws
Marion Wichmann-Fiebig II 5 Abteilungsleiterin „Luft“ 1 Review of the Gothenburg Protocol Link to potential PM control under CLRTAP: – Specifies control.
PM NAAQS Review Update Joseph Paisie Air Quality Strategies & Standards Division, Office of Air Quality Planning & Standards, EPA WESTAR Fall Business.
Jim Jones Acting Assistant Administrator Office of Chemical Safety & Pollution Prevention 1.
EIONET-Workshop on Forward Looking Assessments, May 2008, Copenhagen 1 Matthias Koller Ines Flügel Julia Dose Federal Environmental Agency (UBA)
European Roadmaps for Research Infrastructures presentation by Hans Chang (chair ESFRI) (1st meeting ESFRI Steering Groups, autumn 2005)
25 seconds left…...
Student Survey
Visual 3.1 Delegation of Authority & Management by Objectives Unit 3: Delegation of Authority & Management by Objectives.
1 Atmospheric Concentrations Source: CDIAC. 2 CGE Greenhouse Gas Inventory Hands-on Training Workshop for the Asian Region - Building an Inventory Management.
History of the Master Chemical Mechanism (MCM) and its development protocols Mike Jenkin EPSR Group Department of Environmental Science and Technology.
We will resume in: 25 Minutes.
1 Developing EPA’s Peer Review Program Joint JIFSAN/SRA/RAC Symposium Dorothy E. Patton, Ph.D., J.D. September 30, 2003.
Copyright © 2009 Pearson Addison-Wesley. All rights reserved. Chapter 16 Stationary-Source Local Air Pollution.
IARC MONOGRAPH Occupational Exposures to Bitumens and Their Emissions A Presentation For Asphalt Paving Workers December 1, 2011.
EISWG The Environmental Information Services Working Group of the NOAA Science Advisory Board Raymond J. Ban April 22, 2009.
International Agency for Research on Cancer (IARC) Classification of Radio Frequency (RF) Summary – May 2011.
NSF/ANSI STANDARD 61 FRAMEWORK FOR RISK ASSESSMENTS For use by Toxicology Sub-committee only Please do not copy or distribute.
Life Cycle Overview & Resources. Life Cycle Management What is it? Integrated concept for managing goods and services towards more sustainable production.
HOLD TIME, STORAGE, AND SAMPLE CONTAINER CONSIDERATIONS FOR ANALYTICAL METHODS TO DETERMINE HIGHLY FLUORINATED COMPOUNDS IN ENVIRONMNTAL MATRICES Mary.
OPPT R ISK A SSESSMENT P ROGRAM N OVEMBER 13, 2013.
Multimedia Assessment for New Fuels: Stakeholders’ Meeting September 13, 2005 Sacramento, CA Dean Simeroth, California Air Resources Board Dave Rice, Lawrence.
Take a Stand Murphree, Bella Period 1B Abrams March 29, 2012.
Forging Partnerships on Emerging Contaminants November 2, 2005 John Vandenberg Associate Director for Health National Center for Environmental Assessment.
Ubiquitous Occurrence of Fluorotelomer Alcohols in Eco-friendly Paper-made Food Contact Materials and Their Implication for Human Exposure Guanxiang YUAN,
1 Nanoscale Materials Stewardship Program Environmental Summit May 20, 2008 Jim Alwood Chemical Control Division Office of Pollution Prevention and Toxics.
Outcome of the Workshop on PFOA organised by the Commission 4 th of May 2010 Christine Wistuba, DG ENV, D3.
A Technique for Determining Total Oxidizable Precursors (TOP) of Perfluoroalkyl Compounds Chuck Neslund, Technical Director, Eurofins Lancaster Laboratories.
Multidisciplinary nature of environmental studies Lecture #1
Risk governance of emerging contaminants in drinking water and its resources Comparing practices in the Netherlands, Germany, Switzerland and the State.
Arsenic Acceptable Ambient Level Revision
A Short Update on Perfluorinated Alkyl Substances (PFAS)
Health Effects of PFAS 7th June 2018
Health Effects of PFAS 7th June 2018
A Regional Perspective on Developing Children’s Environmental Health Indicators: The North American Experience Workshop on Environmental Threats to the.
Shanghai, China February 21–22, 2011
Fayetteville, NC August 14, 2018
Air Toxics Program Laura McKelvey.
Per- and Polyfluoroalkyl Substances (PFAS)
Presentation transcript:

1 Can a smog chamber be used to explain why polar bears have 8.6 ng/g of perfluoro octanoic acid in their body? Ole John Nielsen Department of Chemistry University of Copenhagen

2 Acknowledgements Mads P. S. Andersen JPL-NASA, Pasadena, CA, USA Tim. J. Wallington, Mike. P. Hurley, Jim. C. Ball Ford Motor Company, Dearborn, MI, USA Scott. A. Mabury University of Toronto, Toronto, ON, Canada

3 Why am I here?

4 Outline 1.Who am I? 2.Why the interest in PerFluoro Organic Acids (PFOAs) and FluoroTelomer alcohols (FTOHs)? 3.What are PFOA, PFCA and PFOA again? 4.Use of FTOH = C n F 2n+1 CH 2 CH 2 OH (straight chain) 5.Atmospheric chemistry of FTOHs 6.Environmental Impacts and Conclusions 7.Discussions

5 Who am I? 1954 Born 1973 Began at UoC (chemistry and physics) 1974 Important Atmospheric Year 1978 M.Sc. and on to do a PhD at Risø Nat. Lab Risø National Laboratory Ford Research Center Aachen, Germany Risø National Laboratory 1999-? Professor at UoC 2007 Nobel Peace Prize together with Al Gore and 2500 scientists Gas phase kinetics and reaction mechanisms - relevant to the atmosphere – How? Why? IPCC – Intergovernmental Panel of Climate Change

6 2. Why the interest in PerFluoro Organic Acids (PFOAs) and FluoroTelomer alcohols (FTOHs)? What do you think? The interest in environmental chemistry is driven by? Health Concerns

7 Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers Contact UsContact Us | Print VersionPrint Version January 12, 2005: Draft PFOA Risk Assessment submitted to EPA Science Advisory Board for Peer Review: SAB meeting February 22-23, 2005.Draft PFOA Risk Assessment PFOA stands for perfluorooctanoic acid, a synthetic (man-made) chemical that does not occur naturally in the environment. PFOA is sometimes called "C8." Companies use PFOA to make fluoropolymers, substances with special properties that have thousands of important manufacturing and industrial applications. Consumer products made with fluoropolymers include non-stick cookware and breathable, all-weather clothing. More BASIC INFORMATION about PFOA. EPA began its investigation because PFOA is very persistent in the environment, was being found at very low levels both in the environment and in the blood of the general U.S. population, and caused developmental and other adverse effects in laboratory animals. EPA summarized its concerns and identified data gaps and uncertainties about PFOA in a notice published in the Federal Register.More BASIC INFORMATION about PFOAFederal Register

8 Risk Assessment You will need Adobe Reader to view some of the files on this page. See EPA's PDF page to learn more.EPA's PDF page In January 2005, the EPA Office of Pollution Prevention and Toxics submitted a Draft Risk Assessment of the Potential Human Health Effects Associated With Exposure to Perfluorooctanoic Acid and Its Salts (PFOA) (PDF) (132pp, 450KB) to the EPA Science Advisory Board (SAB) for formal peer review. EPA sought this early stage scientific peer review from an outside panel of experts in order to ensure the most rigorous science is used in the Agency's ongoing evaluation of PFOA. That draft was preliminary and did not provide conclusions regarding potential levels of concern. The SAB reviewed the information that was available at the time, and suggested that the PFOA cancer data are consistent with the EPA Guidelines for Carcinogen Risk Assessment descriptor "likely to be carcinogenic to humans." Since its review, additional research has been conducted pertaining to the carcinogenicity of PFOA. EPA is still in the process of evaluating this information and has not made any definitive conclusions regarding potential risks, including cancer, at this time. More information can be found on the SAB PFOA Review Panel Website. EPA is not waiting for all of the answers to be known before taking action, however. In January 2006, EPA asked eight companies in the industry to commit to reducing PFOA from facility emissions and product content by 95 percent no later than 2010, and to work toward eliminating PFOA from emissions and product content no later than All eight of the invited companies submitted commitments to the Stewardship Program by March 1, Read more information on the PFOA 2010/15 Stewardship Program. Draft Risk Assessment of the Potential Human Health Effects Associated With Exposure to Perfluorooctanoic Acid and Its Salts (PFOA) (PDF)Science Advisory Board (SAB)EPA Guidelines for Carcinogen Risk AssessmentSAB PFOA Review Panel WebsitePFOA 2010/15 Stewardship Program

9 In 2006, former Administrator Stephen L. Johnson invited the eight major fluoropolymer and telomer manufacturers to join in a global stewardship program with two goals: To commit to achieve, no later than 2010, a 95% reduction, measured from a year 2000 baseline, in both facility emissions to all media of PFOA, precursor chemicals that can break down to PFOA, and related higher homologue chemicals, and product content levels of these chemicals. To commit to working toward the elimination of these chemicals from emissions and products by Participating companies include: Arkema, Asahi, Ciba, Clariant, Daikin, 3M, DuPont, Solvay Solexis Submitted baseline year 2000 data on emissions and product content at the end of October Report annual progress toward goals each succeeding October and report progress in terms of both U.S. and global operations. Companies also agreed to work cooperatively with EPA and establish scientifically credible analytical standards and laboratory methods to ensure comparability of reporting

10 Long chain perfluorinated acids (PFCAs/PFAs) observed in fauna in urban and remote locations PFOA (perfluorooctanoic acid) C 7 F 15 C(O)OH PFNA (perfluorononanoic acid) C 8 F 17 C(O)OH PFDA (perfluorodecanoic acid) C 9 F 19 C(O)OH PFUA (perfluoroundecanoic acid) C 10 F 21 C(O)OH 3. What are PFOAs, PFCAs and PFOA? PerFluorinated Organic Acids PerFluorinated Carboxylic Acids PerFluorinated Octanoic Acid

11

12 In the far north... …in Polar Bears? PFACsng/g PFOA (8)8.6 PFNA (9)180 PFDA (10)56 PFUNA (11)63 PFDoA (12)6.2 PFTrA (13)11 PFTA (14)0.51 PFPeA (15)<0.5 Martin et al., EST 38 (2004) 373.

13 Facts: No natural sources. Water-soluble PFCA salts used in fluoropolymer processing. Not released in major quantities. Presence of PFCAs in remote areas suggests atmospheric source. The science (why) question? Why are they here? Where do long chain Perfluorocarboxylicacids (PFCAs), C n F 2n+1 COOH come from? Our hypothesis: They are atmospheric degradation products from other long chain fluorinated compounds emitted to the atmosphere

14 22,000 liters of AFFF; ~300 kg of PFOS! “Airport Foam Seeps into Creek” Toronto Star, June 10, 2000

15 Etobicoke Creek Fish Liver Samples; Jan 5, 2001 (spill + 7 months) PFOS PFDoA PFUnA PFDA PFOA PFHxS PFHpA PFTA C12 C14 C10 C8 C7 C11 C8S C6S Moody, C.A., W.C. Kwan, J.W. Martin, D.C.G. Muir, and S.A. Mabury Determination of Perfluorinated Surfactants in Surface Water Samples by Two Independent Analytical Techniques – Liquid Chromatography/Tandem Mass Spectrometry and 19F NMR. Analytical Chemistry. 73: Moody, C.A., J. W. Martin, W. C. Kwan, D. C. G. Muir, and S. A. Mabury Monitoring Perfluorinated Surfactants in Biota and Surface Water Samples Following an Accidental Fire-Fighting Foam Release into Etobicoke Creek. Environ. Sci. Technol. 36:

16 4. FTOH = fluorotelomer alcohol 2001 – FTOHs observed in atmosphere. Oxidation of FTOHs could be a source of PFCA source (against conventional wisdom in atmospheric chemistry community). C n F 2n+1 CH 2 CH 2 OH (straight chain) 4:2 FTOH = C 4 F 9 CH 2 CH 2 OH 6:2 FTOH = C 6 F 13 CH 2 CH 2 OH 8:2 FTOH = C 8 F 17 CH 2 CH 2 OH 10:2 FTOH = C 10 F 21 CH 2 CH 2 OH

17 PolyfluoroAlcohols are highly volatile!!! HC data from Daubert & Danner; FTOH data from Lei et al, submitted J Chem Eng Data and Stock et al, ES&T in press. 8:2 FTOH = 212 Pa

18 FTOH based coatings heavily used in consumer products; *TRP Presentation to USEPA OPPT. Nov 25, 2002 US Public Docket AR x10 6 kg/yr 40% in North America 80% are in polymers*

19 Three necessary conditions: (1)FTOH survive atmospheric transport (2)FTOH degrade to give PFCAs (3)Magnitude of PFCA formation must be significant Use a FTIR Smog chamber Research Question: Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?

20 4. Experimental apparatus and setup

21 FTIR SMOG CHAMBER o140 L Pyrex chamber oX/Cl 2 /N 2 /O 2 /black-lamps oX/CH 3 ONO/NO/air/black-lamps 296 K, 700 Torr

22

23

24

25 Three necessary conditions: (1)Do FTOHs survive atmospheric transport? Measurement of k(OH+FTOH) – Why? (2) Do FTOHs degrade to give PFCAs? (3) Magnitude of PFCA formation must be significant? Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?

26 UV irradiation of FTOH/reference/CH 3 ONO/NO/air mixtures FTOH = 4:2 FTOH, 6:2 FTOH, or 8:2 FTOH reference = C 2 H 2 or C 2 H 4 CH 3 ONO  CH 3 O + NO CH 3 O + O 2  HCHO + HO 2 HO 2 + NO  OH + NO 2 OH + FTOH  products(1) OH + reference  products(2)

27 OH + FTOH  products(1) OH + reference  products(2) Integration gives: FTOH and reference have equal exposure to OH radicals, hence:

28 Loss of FTOH (squares = 4:2; circles = 6:2; triangles = 8:2) versus C 2 H 2 and C 2 H 4 on exposure to OH radicals in 700 Torr of air diluent at 296 K. No discernable difference in reactivity of OH radicals towards 4:2, 6:2, and 8:2 FTOH

29 OH + C n F 2n+1 CH 2 CH 2 OH → products (10) OH + C 2 H 2 → products (11) OH + C 2 H 4 → products (12) Linear fits give k 10 /k 11 = 1.18±0.15 and k 10 /k 12 = 0.131± Using k 11 = 8.5 x and k 12 = 8.66 x gives k 10 = (1.00±0.13) x and (1.13±0.16) x cm 3 molecule -1 s -1. Final value, k 10 = (1.07±0.22) x cm 3 molecule -1 s -1.

30 Assuming: atmospheric lifetime* for CH 3 CCl 3 = 5.7 years k(CH 3 CCl 3 + OH) = 1.0 x cm 3 molecule -1 s -1 then atmospheric lifetime* of F(CF 2 ) n CH 2 CH 2 OH  (1.0x )/(1.1x ) x 5.7 x 365  20 days. * with respect to reaction with OH radicals FTOH Lifetime Estimate

31 Other loss mechanisms? Photolysis – should be negligible Rainout – estimated to be negligible Dry deposition – lifetime estimated to be 8 years Homogeneous reactions other than with OH - unlikely Atmospheric lifetime determined by reaction with OH and is approximately 20 days.

32 Ramifications of Lifetime (1)Estimate flux of t yr -1 necessary to sustain observed atmospheric concentration. (2)FTOH have negligible GWP (3)Spatial distribution will be inhomogeneous (4)FTOH will be transported to remote locations. Global average wind speed = 5 m s -1, 20 days = 8500 km.

33 Assuming 5m/s winds and a 20d lifetime, FTOHs could be transported over 8500 km 20 days… Long Enough for Long Range Transport? Copenhagen to Detroit = 6500 km

34 Three necessary conditions: (1) Do FTOHs survive atmospheric transport? YES (2) Do FTOHs degrade to give PFCAs? (3) Magnitude of PFCA formation must be significant Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?

35 FTIR study of 4:2 FTOH oxidation CF 3 (CF 2 ) 3 CH 2 CHO is the major primary product from Cl atom and OH radical initiated oxidation of 4:2 FTOH

36 FTOH Oxidation mechanism C n F 2n+1 CH 2 CH 2 OH + OH  C n F 2n+1 CH 2 C()HOH + H 2 O C n F 2n+1 CH 2 C()HOH + O 2  C n F 2n+1 CH 2 CHO + HO 2

37 C n F 2n+1 CH 2 CHO is reactive … Gives secondary products …

38 Secondary products: CF 3 (CF 2 ) 3 CHO, CF 3 (CF 2 ) 3 CH 2 COOH, CF 3 (CF 2 ) 3 C(O)OOH

39 FTOH Oxidation mechanism C n F 2n+1 CH 2 CH 2 OH + OH  C n F 2n+1 CH 2 C()HOH + H 2 O C n F 2n+1 CH 2 C()HOH + O 2  C n F 2n+1 CH 2 CHO + HO 2 C n F 2n+1 CH 2 CHO + OH + O 2  C n F 2n+1 CH 2 C(O)OO + H 2 O C n F 2n+1 CH 2 C(O)OO + NO  C n F 2n+1 CH 2 C(O)O + NO 2 C n F 2n+1 CH 2 C(O)O  C n F 2n+ 1 CH 2 + CO 2 C n F 2n+ 1 CH 2 + O 2  C n F 2n+ 1 CH 2 O 2 C n F 2n+ 1 CH 2 O 2 + NO  C n F 2n+ 1 CH 2 O + NO 2 C n F 2n+ 1 CH 2 O + O 2  C n F 2n+ 1 CHO + HO 2

40 Secondary products: C 4 F 9 CHO, C 4 F 9 CH 2 COOH C 4 F 9 C(O)OOH Secondary products are reactive …

41 Tertiary products include: COF 2, CF 3 OH C 4 F 9 COOH Conclusion of FTIR experiments: simulated atmospheric oxidation of 4:2 FTOH (in absence of NO x ) gives a small (few %) yield of C 4 F 9 COOH

42 in presence of NO x 4:2 FTOH   C 4 F 9 CHO  C 4 F 9 COOH FTIR data shows that in gas phase: in absence of NO x 4:2 FTOH   C 4 F 9 CHO  C 4 F 9 COOH Likely explanation, presence of HO 2 radicals in absence of NO x Well established that CH 3 C(O)O 2 + HO 2 gives acetic acid and peracetic acid,, presumably C x F 2x+1 C(O)O 2 + HO 2 reaction gives C x F 2x+1 COOH and C x F 2x+1 COOOH. Product study of C x F 2x+1 C(O)O 2 + HO 2 (x=1-4) to test this idea.

43 C n F 2n+1 C(O)O 2 and HO 2 radicals generated by UV irradiation of C n F 2n+1 CHO/H 2 /Cl 2 mixtures in Torr of air at 296±2 K: Cl 2 + h  2Cl Cl + C n F 2n+1 CHO  C n F 2n+1 CO + HCl C n F 2n+1 CO + O 2 + M  C n F 2n+1 C(O)O 2 + M Cl + H 2  H + HCl H + O 2 + M  HO 2 + M C n F 2n+1 C(O)O 2 + HO 2  products C n F 2n+1 C(O)O 2 + C n F 2n+2 C(O)O 2  products As [H 2 ] o /C n F 2n+1 CHO] o , products/products , Method

44 IR spectra obtained before (A) and after (B) 55 s of irradiation of a mixture of 18.8 mTorr C 2 F 5 C(O)H, 218 mTorr Cl 2 and 2.8 Torr H 2 in 700 Torr of air. The consumption of C 2 F 5 C(O)H was 63%.

45 PFCAs are products of C x F 2x+1 C(O)O 2 + HO 2 reaction Offers reasonable explanation of observed PFCA formation in 4:2 FTOH expts.

46 Branching ratios in reactions of RC(O)O 2 with HO 2 radicals under ambient conditions ( Torr, 296  2K). RC(O)O 2 Products Reference RC(O)OOH+O 2 RC(O)OH+O 3 RC(O)O+O 2 +OH CH 3 C(O)O    0.16[21] CF 3 C(O)O    0.05This work C 2 F 5 C(O)O 2 <   0.04[27] C 3 F 7 C(O)O 2 <  0.02  0.90This work C 4 F 9 C(O)O 2 <  0.02  0.90This work

47

48

49 Three necessary conditions: (1) Do FTOHs survive atmospheric transport? YES (2) Do FTOHs degrade to give PFCAs? YES (3) Magnitude of PFCA formation must be significant Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?

50 FTOH flux into Northern Hemisphere = t yr -1 Assume molar PFCA yield from FTOH of 1-10% Hence, PFCA flux = t yr -1 Assume even spatial distribution Hence, PFCA flux to Arctic = t yr -1 Persistent organochlorine pesticides arctic loading =1.8 t yr -1 Organochlorine pesticides detectable in polar bears at a similar concentration to PFCAs (  ng/g) Order of magnitude calculations suggest atmospheric oxidation of FTOHs is plausible explanation of PFCAs in remote areas.

51 Three necessary conditions: (1) Do FTOHs survive atmospheric transport? YES (2) Do FTOHs degrade to give PFCAs? YES (3) Magnitude of PFCA formation must be significant Looks plausible … more work … Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?

52

53 Concentration of PFOA (in molecule cm-3) at 50 m. altitude in the University of Michigan 3D model (IMPACT) for January and July. The color scale extends from (A) 0 to 1.2x10 3 and (B) 0 to 3x10 3 molecule cm -3. UIUC 2D model

54

55 Conclusions 1.The available evidence suggests, that the atmospheric oxidation of FTOHs makes a significant contribution to the PFCA burden in remote locations. 2.This is just the tip of the ice berg 3.The automobile industry uses large quantities of fluoropolymers but little, if any, FTOHs. Vehicles do not appear to be a source of PFCAs

56 The ”smog” quartet

57 The Atmospheric Science Group Ch F Dk Fin Dk Rus D Est US

58 Extra slides

59

60 8:2 FTOH = C 8 F 17 CH 2 CH 2 OH PFNA = C 8 F 17 C(O)OH PFOA = C 7 F 15 C(O)OH Three necessary conditions: (1)FTOH survive atmospheric transport (2)FTOH degrade to give PFCAs (3)Magnitude of PFCA formation must be significant Use a FTIR Smog chamber Research Question: Does atmospheric oxidation of FTOHs contribute significantly to PFCA burden in remote locations?