Yosuke Watanabe K.Utsunomiya, K.Ozawa, Y.Komatsu, S. Masumoto, T. Sato K. Aoki A,H.Enyo A, S. Yokkaichi A T. Gunji B, H. Hamagaki B, Y. Hori B, T.Tsuji.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Backward φ photo-production from C and Cu targets at E γ = GeV Takahiro Sawada Institute of Physics, Academia Sinica Regular Seminar, AS, 17.
Simulation of the decay pion spectroscopy at JLab Sept Tohoku Uni. S.Nagao Purpose Experimental outline Geant4 simulation Summary  yield & S/N.
Hadron physics with GeV photons at SPring-8/LEPS II
Phi-Psi, Feb.-Mar., 2006, S.Uehara1 Experimental studies of charmonia in two-photon collisions at Belle S.Uehara (KEK) for the Belle Collaboration e +
Detector R&D: J-PARC-E16 K. Ozawa (Univ. of Tokyo) for the E16 collaboration.
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
A search for deeply-bound kaonic nuclear states by in-flight 3 He(K -,n) reaction at J-PARC Hiroaki Ohnishi RIKEN Nishina Center J-PARC E15 experiment.
11 RIKEN Winter School Hideto En'yo, Kyoto University 1 Hideto En’yo Kyoto University Nuclear Matter Probed with  Meson - exploring the lost.
(Concluding) Remarks Ken Imai (JAEA/J-PARC) KEK Workshop on Hadron Physics with high-momentum beams at J-PARC
RIKEN, Kyoto Univ. a, KEK b, CNS Univ. of Tokyo c, ICEPP Univ. of Tokyo d,Tohoku Univ. e Ryotaro Muto, RIKEN, Japan J. Chiba b, H. En’yo, Y. Fukao a, H.
Results of KEK-PS E325 experiment Introduction E325 Experiment Results of data analysis   e + e - spectra   e + e - spectra   K + K.
Hadron physics with meson photoproduction at LEPS/SPring-8 Tomoaki Hotta (RCNP, Osaka University) for LEPS Collaboration MESON 2010 CRACOW, POLAND 12 JUNE.
Experimental study of hadron mass K. Ozawa (University of Tokyo) (University of Tokyo) Contents: Physics motivation Current results Future Experiments.
Experimental approach to the mass modification in nucleus by the J-PARC E16 experiment Yoki Aramaki RIKEN Contents 1.Physics motivation 2.Precedent & Our.
D ATA ANALYSIS FROM THE CERN TEST EXPERIMENT ABOUT THE HADES ELECTROMAGNETIC CALORIMETER By : Tazio Torrieri Supervisor : Vladimir Wagner.
BNL/ Tatsuya CHUJO CNS workshop, Tokyo Univ. Identified Charged Single Particle Spectra at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX.
Study of Pion Capture Solenoids for PRISM H.Ohnishi AB M. Aoki C, Y. Ajima A, N. Fukasawa AD, K. Ishibashi B, Y. Kuno C, T. Miura A, K. Nakahara C, T.
Π - p ω n反応を用いた ω 束縛系と質量の 同時測定実験の提案 東京大学・理・小沢恭一郎.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC) Susumu Oda, H. Hamagaki, K. Ozawa, M. Inuzuka, T. Sakaguchi, T. Isobe,
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Systematic error and double Gaussian fitting Toshi Gogami 3Apr2014.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Nov. 8, 2000RIKEN CC-J RIKEN CC-J (PHENIX Computing Center in Japan) Report N.Hayashi / RIKEN November 8, 2000 PHENIX Computing
Taku Gunji Center for Nuclear Study The University of Tokyo
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
J-PARC Heavy ion program and related topics K. Ozawa (KEK)
1 Medium modifications on vector meson in 12GeV p+A reactions Introduction Result of   e + e - analysis Result of   e + e - analysis Result of 
Data transfer performance of SRS (J-PARC E16 Experiment) YUHEI MORINO RIKEN Nishina Center 1.
PHENIX STATUS W.A. Zajc Columbia University for the PHENIX Collaboration.
1 Fast Pixel Simulation Howard Wieman, Xiangming Sun Lawrence Berkeley Lab.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Evidence of ,  and  meson mass modification in nuclear medium measured in 12 GeV p+A reaction at KEK-PS E325 RIKEN, Kyoto Univ. a, KEK b, CNS Univ.
High-energy hadron physics at J-PARC Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica, Taiwan KEK theory center workshop on Hadron physics with.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
J-PARC での高輝度 ビームに向けた GEM トラッカーの 開発 小沢 恭一郎 ( 東大・理 ) KEK 測定器開発室 Supported by 科研費.
2008 Oct. Tsukuba 1 Misaki Ouchida Hiroshima University For the PHENIX Collaboration ω ω ω e+e+ eーeー γ γ π+π+ π0π0 γ πーπー π0π0 γ γ Low mass vector.
Toru Sugitate / Hiroshima / PHX032 / The JHF Workshop at KEK on Dec , 2001 Physics at High Baryon Density Region Toru Sugitate Hiroshima University.
親愛的吉姆舅舅: 今天吃完晚餐後,奶奶說,在家 裡情況變好以前,您要我搬到城裡跟 您住。奶奶有沒有跟您說,爸爸已經 好久沒有工作,也好久沒有人請媽媽 做衣服了? 我們聽完都哭了,連爸爸也哭了, 但是媽媽說了一個故事讓我們又笑了。 她說:您們小的時候,她曾經被您追 得爬到樹上去,真的嗎? 雖然我個子小,但是我很強壯,
Experimental Activities at University of Tokyo K. Ozawa (University of Tokyo) (University of Tokyo)
Hadron mass modifications at J-PARC K. Ozawa (KEK) Contents: Physics motivations On-going experiment at J-PARC Future plans including far future plans.
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
First ExclusiveMeasurement of the Non-Mesonic Weak Deacay of 12  C First Exclusive Measurement of the Non-Mesonic Weak Deacay of 12  C Seoul national.
Simulation / reconstruction with GEMs at DAC A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Fall DNP Meeting,  meson production in Au-Au and d-Au collision at \ /s NN = 200 GeV Dipali Pal Vanderbilt University (for the PHENIX collaboration)
Seoul National University On behalf of J-PARC E18 Collaboration
TOF detector for RIKEN Rare-RI Ring
F Mass modification of vector mesons with a little emphasis on what can be done at J-PARC K. Aoki RIKEN 2012/11/21.
Tracking(1) Kp2 decay-in-flight BG simulation
Measurements of in-medium decay of vector mesons Hideto En’yo RIKEN / Kyoto University for The KEK-PS E325 Collaboration Physics motivation Status.
Hadron experimental facility at J-PARC
Hideto En'yo, RIKEN/RBRC
Detector Concepts Target/Luminosity Additions: Recoil detector
The First
Precision Measurement of η Radiative Decay Width via Primakoff Effect
how is the mass of the nucleon generated?
Search for Exotic Hadrons, H-dibaryon resonance and Pentaquark
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Rough Idea of K ++AK *+X Experiments
Physics program in Hall A for the CEBAF 12 GeV era
Towards Understanding the In-medium φ Meson with Finite Momentum
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
->K+K- Productions at 62.4GeV Au+Au Collisions
Presentation transcript:

Yosuke Watanabe K.Utsunomiya, K.Ozawa, Y.Komatsu, S. Masumoto, T. Sato K. Aoki A,H.Enyo A, S. Yokkaichi A T. Gunji B, H. Hamagaki B, Y. Hori B, T.Tsuji B M. Sekimoto C University of Tokyo, RIKEN A, CNS B, KEK C, Development of GEM detectors for a large acceptance ф meson spectrometer 1

Outline 2 1. J-PARC E16 experiment 2. GEM tracker Setup Result of beamtests 3. Further improvement 4. Summary

J-PARC E16 experiment 3 p KEK –PS E325 φ Mass modification exist 30 GeV 100 times more statistc 2 times better resolution Systematic study -Momentum dependence -Nuclear size depencence  M =11MeV,  <1.25  M =5MeV,  <0.5 J-PARC E16 Detection of φ meson mass spectrum modification in nuclear matter

E16 spectrometer 4 How to 100 times more statistic? × 10 beam intensity × 5 acceptance × 2 cross section Required ability for the tracker -100 μm position resolution with high rate events(5kHz/mm 2 ) New spectrometer GEM

GEM(Gas Electron Multiplier) 5 50 μm 100 μm 140 μm 70~90 μm 4 μm Copper 10cm Our GEM (made in Japan) schematic view Hole size : μm Pitch: 140 μm Most of the applications use 50 μ m GEM. Kapton LCP

GEM Chamber 6 1 2 3 Collect ionized electrons (Drift gap) Length Electric field Amplify electrons setup1: 50 μ m GEM × 3 setup2: 50 μ m GEM+100 μ m GEM 2 D strip read out 700μ m pitch Chamber set up and parameters

Test configuration 7 Drift gap 11mm, 500V/cm3mm, 1500V/cm Amplifing part 50 μm×3100μm+ 50 μm Read out strip pitch 700 μm Gas Ar90%CH 4 10% Feature More primary electrons Tolerant to inclined beam Second test 2mm First test 2mm good effective gain

Analysis procedure 8 Hit position determined by GEM chamber Hit position determined by Silicon Strip Detector(SSD) X1X1 X4X4 X3X3 X2X2 Q2Q2 Q3Q3 Q4Q4 Q1Q1 Q5Q5 X5X5 Center Of Gravity SSD GEM Events difference mm -Multiple scattering -Tracking Accuracy Position resolution beam

Test result 9 incident angle Drift gap Better resolution for inclined beam Achieved our goal ! angleFirst Second 0100 μm 160 μm μm 270 μm μm The effect of multiple scattering and tracking accuracy is subtracted Required performance position resolution : 100 μ m incident angle : 0 – 30 degree

Further improvement 10 Worse resolution for Second test Estimate of the number of electrons in drift gap. FirstSecond N primary x collection ~ 15 ~3~3 Collection efficiency ~ 0.2 ~ 0.15 Improve collection efficiency A setup with 3mm drift gap may get as many N primary x collection as the first test Drift gap collection efficiency: probablity for an electron in drift gap to be collected and multiplied

Better collection efficiency with narrow drift gap 11 ε collection = ε collection (GEM geometry, E GEM / E drift ) E GEM should be stronger E drift should be weaker 50 μ m100 μ m 340V 285V(/50 μ m) disadvantage Setup with three layers of 50 μm GEM The collection efficiecy of the first test with three layers of 50 μm GEM is also bad.. First testNow ~90 μm ~75 μm The setup with current design of GEM has 2~3 times better collection efficiency.and 2 times larger gain (preliminary results) smaller hole + stronger E GEM - less optical transparency

Summary 12 Developing of GEM tracker for E16 experiment is under way We achieved 100 resolution for 0 degree beam. Narrower drift gap leads to better resolution for tilted track. We obtained better collection efficiency with smaller hole GEM Another beam test will be performed at the end of the next month.

Back ups 13

Beam test setup 14 20cm 40cm SSD (silicon Strip Detector) scintilator GEM chamber pre-amplifierpost-amplifier charge sensitive ADC(v792) Read out circuits for GEM Trigger ← Scintillators 2 GeV electron ~5Hz600MeV positron ~100Hz

Remaining issues 2 15 What if collection efficiency = 100% ? How to deal with it ? (To be tested) simulation position resolution ( μm ) incident angle (degree) Not enough for our goal Narrower drift gap (1mm,2mm) Use arrival timing information

Estimation of collection efficiency 16 Fit with simulation Make primary and secondary electrons primary : poisson secondary: NIM Amplify those electrons Polya distribution( θ~0-5 ) Add noise experiment simulation Collection efficiency

laboratory Sr scintilater Pad read out 3cm 12cm 50 μmGEM×3 3mm experiment simulation Estimate the collection efficiency by comparing with simulation

Analysis procedure18 Hit position determined by GEM chamber X1X1 X4X3X3 X2X2 Q2Q2 Q3Q3 Q4Q4 Q1Q1 Q5Q5 X5X5 Center Of Gravity -Multiple scattering -Tracking Accuracy Q i /Q XiXi hit position resolution X i – X SSD mm ratio X GEM – X SSD mm SSD GEM