Worked out for Geology/Physics 360

Slides:



Advertisements
Similar presentations
Chapter 11: Characterizing Stars
Advertisements

If a star is very hot, the electrons will be freed from the hydrogen atom. (Ionized) Once they are free, they act like particles and emit a continuous.
P 7 20 Questions Traffic Light Quiz. Rules Everyone should reveal their answer at the same time Count down: 3, 2, 1, show!
Video Field Trip Stars: Life and Death
7B Stars … how I wonder what you are.. 7B Goals Tie together some topics from earlier in the semester to learn about stars: How do we know how far away.
Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 17 The Nature of Stars CHAPTER 17 The Nature of Stars.
Chapter 11 Surveying the Stars. I.Parallax and distance. II.Luminosity and brightness Apparent Brightness (ignore “magnitude system” in book) Absolute.
Properties of The Stars - Brightness. Do all stars appear the same? How are they different? Which one looks the coolest? Hottest? Are they all the same.
… how I wonder what you are.
Measuring Distance and Size of Stars Physics 113 Goderya Chapter(s): 9 Learning Outcomes:
Chapter 3 Continuous Spectrum of Light 3
Stars Stars are very far away.
9 Stars … how I wonder what you are.. 9 Goals Stars are Suns. Are they: –Near? Far? –Brighter? Dimmer? –Hotter? Cooler? –Heavier? Lighter? –Larger? Smaller?
… how I wonder what you are.
8 Stars … how I wonder what you are.. 8 Goals Stars are Suns. Are they: –Near? Far? –Brighter? Dimmer? –Hotter? Cooler? –Heavier? Lighter? –Larger? Smaller?
Deducing Temperatures and Luminosities of Stars (and other objects…)
ASTR100 (Spring 2008) Introduction to Astronomy Classifying Stars Prof. D.C. Richardson Sections
Stars Properties: Brightness and Color Reasons for brightness: Proximity Temperature of star.
Properties of Stars How do we measure stellar luminosities?
Star Notes Everything scientist know about a star they determined by looking at a dot. .
Hertzsprung-Russell Diagrams. What is a star? A cloud of gas, mainly hydrogen and helium The core is so hot and dense that nuclear fusion can occur. The.
The Family of Stars Please press “1” to test your transmitter.
Black Body Radiation Physics 113 Goderya Chapter(s): 7 Learning Outcomes:
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
How Do Astronomers Measure the Brightness of a Star?  Stars vary greatly in brightness  Early peoples observed bright stars and grouped them into constellations.
Surveying the Stars Insert TCP 5e Chapter 15 Opener.
Chapter 10 Measuring the Stars. Units of Chapter 10 The Solar Neighborhood Luminosity and Apparent Brightness Stellar Temperatures Stellar Sizes The Hertzsprung-Russell.
Measuring the Stars How big are stars? How far away are they?
Stars Part One: Brightness and Distance. Concept -1 – Temperature λ max (metres) = 2.90 x m k T (Kelvin) λ max = Peak black body wavelength T =
Characteristics of Stars TLC Sun Video 14
Star Light, Star Bright Going from the Sun to other Stars.
Chapter 19 The Stars Distances to stars are measured using parallax.
Spectroscopy – the study of the colors of light (the spectrum) given off by luminous objects. Stars have absorption lines at different wavelengths where.
The Properties of Stars
Stars Part One: Brightness and Distance. Concept -1 – Temperature λ max (metres) = 2.90 x m k T (Kelvin) λ max = Peak black body wavelength T =
1 Stars Stars are very far away. The nearest star is over 270,000 AU away! ( Pluto is 39 AU from the Sun ) That is equal to 25 trillion miles! At this.
Chapter 8: Characterizing Stars. As the Earth moves around the Sun in its orbit, nearby stars appear in different apparent locations on the celestial.
All stars form in clouds of dust and gas. Balance of pressure: outward from core and inward from gravity.
Characteristics of Stars. Distances To The Stars Stars are separated by vast distances. Astronomers use units called light years to measure the distance.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 17.
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Goal: To understand how to find the brightness of stars and what they mean. Objectives: 1)To learn about Absolute brightness 2)To learn about the Magnitude.
Stars up to Chapter 9.3, page 194 “The stars are distant and unobtrusive, but bright and enduring as our fairest and most memorable experiences.” Henry.
Ch. 28 The Stars Properties of Stars ???
Chapter 11 Surveying the Stars The brightness of a star depends on both distance and luminosity How luminous are stars?
Blackbody Radiation Astrophysics Lesson 9.
Stars come in all sizes, small, large and even larger.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Measuring the Stars.
© 2011 Pearson Education, Inc. Chapter 17 Measuring the Stars.
PHYS 206 Stars in General Only 6 of the 20 brightest stars in the sky are closer to us than 10pc  14 of the 20 brightest stars in the sky must have absolute.
Measuring the Stars What properties of stars might you want to determine?
Measuring the Stars How big are stars? How far away are they? How bright are they? How hot? How old, and how long do they live? What is their chemical.
Chapter 11 Surveying the Stars. How do we measure stellar luminosities?
Characteristics of Stars
 The H-R Diagram is actually a graph that illustrates the relationship that exists between the average surface temperature of stars and their absolute.
Copyright © 2012 Pearson Education, Inc. Chapter 11 Surveying the Stars.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 10 Measuring the Stars.
Chapter 19 The Stars Distances to stars are measured using parallax.
© 2017 Pearson Education, Inc.
Unit 10: Measuring the Properties of Stars
Stars.
Review of Stefan-Boltzmann Law and Practice Problems
Chapter 10 Measuring the Stars
A Beginner’s Guide to the Universe
Option E Astrophysics.
… how I wonder what you are.
Star Classes Los Cumbres Observatory.
… how I wonder what you are.
Temperature.
Presentation transcript:

Worked out for Geology/Physics 360 Problems in Chapter 13 Worked out for Geology/Physics 360

Sirius Now (today) in March An Illustration of Parallax using HNSKY Sirius in Sept. 2010 (6 months later)

Question: How would we find a closer star than Proxima Centauri? Problem 3. The Parallax of the red giant Betelgeuse is just barely measurable and has a value of about 0.005 arc seconds. What is its distance? Suppose the measurement is in error by + or – 0.003 arc seconds. What limits can you set on its distance. Answer: p(Betelgeuse) = 0.005 arc seconds. Therefore its distance is d = 1/p = 200 pc. The error in this measurement is +/–0.003", so we have to add and subtract this figure from the parallax angle to give the lower and upper limits to the distance estimate. d(pc) = 1/0.008 = 125 pc, the larger angle corresponds to the closer distance d(pc) = 1/0.002 = 500 pc, the smaller angle corresponds to the farther distance

Problem 5. The star Rigel radiates most strongly at about 200 nm Problem 5. The star Rigel radiates most strongly at about 200 nm. What is its temperature? How does this compare to the Sun. 𝝀m for Rigel = 200 nm. Use Wien’s Law to find its temperature? T = 3 × 106 K nm / 𝝀m = 3 × 106 K nm / 200 nm = 15,000 K. This is much hotter than the surface of the Sun, which is about 6000 K. (2.5 times hotter). (Note that we have approximated the constant here as 3 x 106, it is closer to 2.9 x 106  

Problem 6. The bright southern star Alpha Centauri radiates most strongly at about 500 nm. What is its temperature? How does this compare to the Sun. . Alpha Centauri has its peak radiation at 500 nm. Applying Wien’s Law, T = 3 × 106 K nm / 500 nm = 6000 K. The temperature of this star is approximately the same as our Sun’s, so Alpha Centauri has a similar spectral type to the Sun (G2).  

Problem 7. Arcturus is about ½ as hot as the sun but is about 100 times more luminous. What is its radius compared to the Sun. . For Arcturus, T = To/2, where To is the temperature of the Sun. L = 100Lo. To find the star’s radius, use the Stefan-Boltzmann Law, which relates a star’s luminosity, L, to its temperature, T, and radius, R. L = 4𝜫R2 𝝈 T4 or LArc = 4𝜫R2Arc 𝝈 T4Arc and Lo = 4𝜫R2o 𝝈 T4o We want to find RArc in terms of Ro. 100 Lo = LArc = 4𝜫R2Arc 𝝈 T4Arc 100 (4𝜫R2o 𝝈T4o) = 4𝜫R2Arc 𝝈 T4Arc 100 (R2oT4o) = R2Arc T4Arc = R2Arc (To/2) 4 100 (R2oT4o) = R2Arc (T4o) / 24 100 (R2o) = R2Arc / 16 1600 (R2o) = R2Arc Therefore R Arc = (1600) 1/2 Ro = 40 Ro Arcturus is 40 times wider than the Sun.