Lecture 13 3.2,3.3 Sequences & Summations Proof by Induction.

Slides:



Advertisements
Similar presentations
Extensible Networking Platform CSE 240 – Logic and Discrete Mathematics Review: Mathematical Induction Use induction to prove that the sum of the.
Advertisements

Discrete Math Methods of proof 1.
Mathematical Induction
Methods of Proofs October 20, A Good Proof State your plan Avoid excessive symbols Simplify as much as possible Good notation 2.
Mathematical Induction (cont.)
Lecture 2 Based on Chapter 1, Weiss. Mathematical Foundation Series and summation: ……. N = N(N+1)/2 (arithmetic series) 1 + r+ r 2 + r 3 +………r.
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
Induction Lecture 5: Sep 21 (chapter of the book and chapter of the notes)
Induction and recursion
CPSC 121: Models of Computation
CSE115/ENGR160 Discrete Mathematics 02/07/12
1 Intro to Induction Supplementary Notes Prepared by Raymond Wong Presented by Raymond Wong.
CSE115/ENGR160 Discrete Mathematics 03/22/12 Ming-Hsuan Yang UC Merced 1.
Lecture ,3.3 Sequences & Summations Proof by Induction.
1 Section 3.3 Mathematical Induction. 2 Technique used extensively to prove results about large variety of discrete objects Can only be used to prove.
Lecture , 3.1 Methods of Proof. Last time in 1.5 To prove theorems we use rules of inference such as: p, p  q, therefore, q NOT q, p  q, therefore.
Mathematical Induction
Methods of Proof & Proof Strategies
MATH 224 – Discrete Mathematics
Lecture 9. Arithmetic and geometric series and mathematical induction
Induction and recursion
Mathematical Induction. F(1) = 1; F(n+1) = F(n) + (2n+1) for n≥ F(n) n F(n) =n 2 for all n ≥ 1 Prove it!
1 Introduction to Abstract Mathematics Chapter 4: Sequences and Mathematical Induction Instructor: Hayk Melikya 4.1- Sequences. 4.2,
MATH 224 – Discrete Mathematics
Section 1.8. Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness Proofs.
Section 2.4. Section Summary Sequences. Examples: Geometric Progression, Arithmetic Progression Recurrence Relations Example: Fibonacci Sequence Summations.
Week 15 - Wednesday.  What did we talk about last time?  Review first third of course.
10/17/2015 Prepared by Dr.Saad Alabbad1 CS100 : Discrete Structures Proof Techniques(1) Dr.Saad Alabbad Department of Computer Science
Discrete Mathematics Tutorial 11 Chin
Copyright © Cengage Learning. All rights reserved. CHAPTER 7 FUNCTIONS.
Module #13: Inductive Proofs Rosen 5 th ed., § inference of a generalized conclusion from particular instances 2. mathematical demonstration of the.
Basic Structures: Sets, Functions, Sequences, and Sums CSC-2259 Discrete Structures Konstantin Busch - LSU1.
Copyright © 2014 Curt Hill Cardinality of Infinite Sets There be monsters here! At least serious weirdness!
Chapter Mathematical Induction 4.2 Strong Induction and Well-Ordering 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms.
CS201: Data Structures and Discrete Mathematics I
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
Aim: How can the word ‘infinite’ define a collection of elements?
Section 3.3: Mathematical Induction Mathematical induction is a proof technique that can be used to prove theorems of the form:  n  Z +,P(n) We have.
ICS 253: Discrete Structures I Induction and Recursion King Fahd University of Petroleum & Minerals Information & Computer Science Department.
Module #15 – Inductive Proofs 12/6/2015(c) , Michael P. Frank1 Inductive Proofs: a brief introduction Rosen 5 th ed., §3.3 ~35 slides, ~1.5 lecture.
CompSci 102 Discrete Math for Computer Science March 1, 2012 Prof. Rodger Slides modified from Rosen.
(CSC 102) Lecture 23 Discrete Structures. Previous Lecture Summery  Sequences  Alternating Sequence  Summation Notation  Product Notation  Properties.
CS 103 Discrete Structures Lecture 13 Induction and Recursion (1)
Sets Definition: A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a.
1 INFO 2950 Prof. Carla Gomes Module Induction Rosen, Chapter 4.
1 Mathematical Induction CS 202 Epp, chapter 4. 2.
Mathematical Induction Section 5.1. Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If.
CS 285- Discrete Mathematics
Mathematical Induction
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
CSE 311: Foundations of Computing Fall 2013 Lecture 8: Proofs and Set theory.
1 2/21/2016 MATH 224 – Discrete Mathematics Sequences and Sums A sequence of the form ar 0, ar 1, ar 2, ar 3, ar 4, …, ar n, is called a geometric sequence.
Chapter 5. Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If we can reach.
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Sequences Lecture 11. L62 Sequences Sequences are a way of ordering lists of objects. Java arrays are a type of sequence of finite size. Usually, mathematical.
3.3 Mathematical Induction 1 Follow me for a walk through...
Chapter 5 1. Chapter Summary  Mathematical Induction  Strong Induction  Recursive Definitions  Structural Induction  Recursive Algorithms.
CSE15 Discrete Mathematics 02/08/17
Advanced Algorithms Analysis and Design
Induction and recursion
Chapter 5 Induction and Recursion
Discrete Structures for Computer Science
Induction and recursion
Induction Chapter
Advanced Analysis of Algorithms
Copyright © Cengage Learning. All rights reserved.
Mathematical Induction
Induction Rosen 5 Lecture 8: Oct 29, 30.
Presentation transcript:

Lecture ,3.3 Sequences & Summations Proof by Induction

Sums geometric progression: arithmetic progression: some other useful sums: derivative a=1, n  infinity

Sums Example: set notation:note: the order doesn’t matter when sum these elements.

Cardinality definition: Two sets have the same cardinality if and only if there is a one-to-one correspondence between them. This is simple for finite sets, but what if a set has infinite elements? definition: A set that is finite or has the same cardinality as the set of positive integers (Z+) is called countable. Example: Consider the sequence {an}, an = n^2, n={1,2,3,4...} Naively speaking, there seem to be much less elements in {an} than in Z+ (since we skip a lot). Infinity is weird! Here is the one-to-one mapping: infinity(intuitively: you can enumerate them)

cardinality Now what about the positive rational numbers: p/q with p,q integer, q not 0 ? ½ 2 3 1/3 ¼ 2/3 3/2 4 5 skip set of positive rational numbers are countable, in fact the set of all rational numbers is countable : 4 countable quadrants.

cardinality That was amazing? Now check this out: a proof that the real numbers are not countable! When a prove seems impossible, try to prove a contradiction. First this: unions of countable sets are countable intersections of countable sets are countable a subset of a countable set is countable. Prove: assume that the reals are countable,  the reals in (0,1) are countable (since it is a subset),  Thus there is a sequence as follows: r1 = 0.d11 d12 d12 d14... r2 = 0.d21 d22 d23 d24... r3 = 0.d31 d32 d33 d34... etc. construct the number: r = 0.c1 c2 c3 c4... with ci=4 if dii not 4 ci = 5 if dii = 4 This is guaranteed to be different than any real in the list, so it isn’t in the list, so the list is not complete.  contradiction!  real in [0,1] are uncountable  all reals are uncountable.

3.3 Mathematical Induction If we want to prove propositions P(k) for all positive integers, we may use inductions. First we prove: P(1) is true. Then we prove P(k)  P(k+1). So, is P(100) true? yes, use “modus ponens” 99 times. P(1) P(1)  P(2) ____________ P(2) P(2)  P(3) ___________ P(3) until P(100). formally:

Examples prove that the sum of the first n odd positive integers is n^2. n=1: 1 = 1. assume it’s true for some k k-1 = k^2 is true. add 2k+1 on each side: k-1 + 2k+1= k^2 + 2k (k+1)-1 = (k+1)^2

Examples Prove that n < 2^n for positive integers n. P(1): 1 < 2 Inductive step: assume P(k) is correct, prove P(k+1) is correct. k < 2^k k+1 < 2^k + 1 < 2^k + 2^k = 2^(k+1) Note: we could of course also start our induction at another integer b. Example: Prove that 2^n = 4. P(4) = 2^4 = 16 < 4! = = 24. Induction: assume 2^k < k!  2 x 2^k < 2 x k! 2^(k+1) = 4). 2^(k+1) < (k+1)!

Fun Example Show that a chessboard with 2^n x 2^n squares where one arbitrary square has been removed can be tiled with L-shapes. (needs drawing) P(1): All 4 possibilities of removing the square for a 2x2 example are precisely covered with 1 L-shape. Assume P(k) is true. Now construct a chessboard with that is twice as large in both directions. Equally divide it into 4 pieces. Remove one piece arbitrarily from one of the 4 pieces. Since P(k) is true that piece can be covered with L-shapes. Next place one L-shape in the middle to remove one square from the remaining 3 pieces. Again due to P(k) these can now be covered as well.

Strong Induction induction (I): strong induction (SI): SI  I: I  SI: they are equivalent

Strong Induction Example: Consider the game where there are 2 piles of n matches. Each player picks an arbitrary number of matches from one pile. The one who gets the last matches wins. Proposition: The player who starts second can always win. P(1): 2 piles with 1 match each. Second player always wins. Assume player 2 wins when we have 2 piles of k matches. Can player 2 win when we have 2 piles of k+1 matches?  Player 1 will have to take between 1 and k+1 matches from 1 pile. If he picks k+1 matches, player 2 wins by grabbing all matches from the other pile. If he picks between 1 and k matches, player two takes the same amount from the other pile reducing the problem to a smaller equivalent problem. Strong Induction  player 2 always wins

Examples Proposition: every positive integer n>2 can be written as the product of primes. P(2): product of itself (it’s prime). Assume k can be written as a product of primes. Can we prove it for k+1? two cases: k+1 = prime (thus it is a product of one number – itself). k+1 = a x b However since both a and b = 2, we know that a and b can be written as the product of primes  a x b is a product of primes.

The well ordered property Every non-empty set of nonnegative integers has a least element. This is a trivial statement made explicit so we can give it a name in a proof... Example: Round-Robin tournament: n players play against each other. A cycle is a situation where p1 beats p1, p2 beats p3, pn beats p1. Proposition: If there is a cycle of length greater than 3, then there is also a cycle of 3 among the people in the larger cycle. Prove: (by contradiction) Assume that there is a cycle of length k, where k is the smallest integer > 3 for which a cycle exist and no cycle of length 3 exists. Cycle: p1 p2 p3... pk k> 3 Look at p1 p2 p3  if p3 beats p1 we have a cycle of length 3 (contradiction)  if p1 beat p3 we can construct the cycle p1 p3 p4... pk which also leads to a contradiction.

Infinite Descent A method to prove that a propositional function P(k) is false for all positive integers k. Assume that P(k) is true for at least one k. By the well ordered property there must be a least element s, such that P(s) is true. We show that there is a s’ for which P(s’) is true with s’<s. This contradicts the assumption. In other words, there is no least s’. Example: Prove that sqrt(2) is not rational. Assume it is rational  sqrt(2) = M/N where N is assumed the smallest possible positive denominator. We now prove that 2N-M / N-M = N / M with 0 < N-M < N so this leads to a contradiction. We use M^2 = 2N^2: 2N-M / M-N = (2N-M)N / (M-N)N = 2N^2 – MN / (M-N)N = M^2 – MN / (M-N)N = (M-N) M / (M-N) N = M/N Finally ones shows that 0 < (M-N) < N from 1 < sqrt(2) < 2.