Chapter 11: Chi – Square Goodness – of – Fit Tests

Slides:



Advertisements
Similar presentations
CHAPTER 23: Two Categorical Variables: The Chi-Square Test
Advertisements

Chapter 11 Inference for Distributions of Categorical Data
Chapter 13: Inference for Distributions of Categorical Data
Please turn in your signed syllabus. We will be going to get textbooks shortly after class starts. Homework: Reading Guide – Chapter 2: The Chemical Context.
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 26: Comparing Counts. To analyze categorical data, we construct two-way tables and examine the counts of percents of the explanatory and response.
Significance Tests for Proportions Presentation 9.2.
Chapter 13: Inference for Tables – Chi-Square Procedures
Testing Distributions Section Starter Elite distance runners are thinner than the rest of us. Skinfold thickness, which indirectly measures.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on the Least-Squares Regression Model and Multiple Regression 14.
More About Significance Tests
Chapter 11: Inference for Distributions of Categorical Data.
Chapter 26 Chi-Square Testing
Chapter 11 Inference for Tables: Chi-Square Procedures 11.1 Target Goal:I can compute expected counts, conditional distributions, and contributions to.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 11 Inference for Distributions of Categorical.
Chapter 11: Inference for Distributions of Categorical Data Section 11.1 Chi-Square Goodness-of-Fit Tests.
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
+ Chapter 12: More About Regression Section 12.1 Inference for Linear Regression.
CHAPTER 9 Testing a Claim
CHAPTER 11 SECTION 2 Inference for Relationships.
Chapter 13 Inference for Counts: Chi-Square Tests © 2011 Pearson Education, Inc. 1 Business Statistics: A First Course.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
Chapter 13- Inference For Tables: Chi-square Procedures Section Test for goodness of fit Section Inference for Two-Way tables Presented By:
+ Unit 6: Comparing Two Populations or Groups Section 10.2 Comparing Two Means.
+ Section 11.1 Chi-Square Goodness-of-Fit Tests. + Introduction In the previous chapter, we discussed inference procedures for comparing the proportion.
11.1 Chi-Square Tests for Goodness of Fit Objectives SWBAT: STATE appropriate hypotheses and COMPUTE expected counts for a chi- square test for goodness.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
AP Statistics Chapter 13 Section 1. 2 kinds of Chi – Squared tests 1.Chi-square goodness of fit – extends inference on proportions to more than 2 proportions.
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8… Where we are going… Significance Tests!! –Ch 9 Tests about a population proportion –Ch 9Tests.
 Check the Random, Large Sample Size and Independent conditions before performing a chi-square test  Use a chi-square test for homogeneity to determine.
Check your understanding: p. 684
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
11.1 Chi-Square Tests for Goodness of Fit
Ch 26 – Comparing Counts Day 1 - The Chi-Square Distribution
Chapter 11: Inference for Distributions of Categorical Data
Chapter 12 Tests with Qualitative Data
AP Stats Check In Where we’ve been…
Analysis of count data 1.
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8…
Chi Square Two-way Tables
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8…
Chapter 11: Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Chapter 10 Analyzing the Association Between Categorical Variables
CHAPTER 11 Inference for Distributions of Categorical Data
Inference for Relationships
Inference on Categorical Data
Lesson 11 - R Chapter 11 Review:
Analyzing the Association Between Categorical Variables
Chapter 11: Inference for Distributions of Categorical Data
Chapter 13: Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 14.1 Goodness of Fit Test.
Chapter 11: Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Inference for Distributions of Categorical Data
Presentation transcript:

Chapter 11: Chi – Square Goodness – of – Fit Tests Standard: Statistical inference guides the selection of appropriate models. A. Estimation (point estimators and confidence intervals) B. Tests of significance Essential Question: Describe the display of observed or expected amount of an object distributed. Learning Target: Students will be able to construct a chart to display the distribution of expected amount versus observed amount.

Section 1 One – way table versus a two – way table: One way: displays only the distribution of one categorical variable in one sample. Two way: distribution of one categorical variable in two or more samples or groups or the relationship between two categorical variables in one sample.

Recap If we wanted to only focus on one color of M&Ms – the proportion of this color occurring, then we would use the one sample z test. However, in this case, we are focusing on all the colors. Therefore, we want to turn to a new significance test (the chi-square goodness-of-fit test).

Comparing Observed and Expected Counts: the Chi-Square Statistic The null hypothesis in a Chi-square will state a claim based upon the distribution of a single categorical variable. Example: look at the H0 on pp. 678 The alternate hypothesis is that the categorical variable does not have the specified distribution. Example: look at the Ha on pp. 678 You can also write in another form: pp. 679

Comparing Observed and Expected Counts: the Chi-Square Statistic Idea behind Chi-square test Compare the observed counts from our sample with the cunts that would be expected if H0 was true. The more the observed counts differ from the expected counts, the more evidence we have against the null. The expected amounts can be obtained by taking the sample size and multiplying by each proportion of its distribution Take a look at Example on pp. 679 Another way to see numbers rather than a chart is by a bar graph We see large differences between the expected and observed values in this example, therefore we want to take a closer look. We want to calculate a statistic that measures how far apart the observed and expected values are from one another. We will use the chi-square statistic: x2 = summation of (observed – expected)2 / expected (look for further detail on pp. 680): take a look at example on pp. 680

Comparing Observed and Expected Counts: the Chi-Square Statistic X2 is a measure of the distance of the observed counts from the expected counts. ** Remember distance values are only zero or a positive value. Large values of x2 indicates a strong evidence against the null. Small values of x2 suggests that the data is consistent with the null hypothesis. To know if the x2 is considered a large or small value, we will have to evaluate the p-value (which comes later in the chapter – so be patient).

The Chi-square Distributions and P-values When the expected counts are all at least 5, then the sampling distribution of the x2 statistic is close to a chi-square distribution with df equal to the number of categories minus 1. The chi-square distributions are a family of distributions that take only positive values and are skewed to the right. A particular chi-square distribution is specified by giving its df. The chi-square goodness-of-fit test uses the chi-square distribution with df = # of categories – 1. Briefly look over pp. 682 below the yellow box Now take a look at the example on pp. 683 (you can also find p-value through the calculator – look in the back of the book) Remember to conclude to reject or fail to reject the null: if the p-value is less than significance level then reject, if it is greater than the fail to reject.

Check your understanding Complete the following check your understanding and turn – in for observing your understanding: pp. 681 and 684 Stop here for Wednesday 4/9

Carry out a Test ** rule of thumb: all expected values must be at least 5. This large sample size condition takes place of the normal condition We still need to take the independent and random conditions. Look over the yellow box on pp. 685 and the caution right below the yellow box Take a look at example on pp. 686 and 688-689 Take a look at the back of book for calculator steps Classwork/Homework pps. 692-695 #s 1,2,3,5,11, 19-22