Week 111 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 17 Auction-based.
Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
An Efficient Dynamic Auction for Heterogeneous Commodities (Lawrence M.Ausubel - september 2000) Authors: Oren Rigbi Damian Goren.
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
Complexity Classes: P and NP
BPS - 5th Ed. Chapter 111 Sampling Distributions.
Algorithmic mechanism design Vincent Conitzer
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Estimating Volatilities and Correlations
Blackbox Reductions from Mechanisms to Algorithms.
Class 4 – Some applications of revenue equivalence
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
CPS Bayesian games and their use in auctions Vincent Conitzer
Combinatorial auctions Vincent Conitzer v( ) = $500 v( ) = $700.
Practical Public Sector Combinatorial Auctions S. RaghavanUniversity of Maryland (joint work with Robert Day, University of Connecticut) Full paper “Fair.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Week 9 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Preference Elicitation Partial-revelation VCG mechanism for Combinatorial Auctions and Eliciting Non-price Preferences in Combinatorial Auctions.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Multi-Unit Auctions 1. Many auctions involve the sale of multiple similar or identical units. Cases of wine at an auction house, carbon permits, shares.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
Algorithmic Applications of Game Theory Lecture 8 1.
Mechanism Design and the VCG mechanism The concept of a “mechanism”. A general (abstract) solution for welfare maximization: the VCG mechanism. –This is.
1 Multiunit Auctions Part II Thanks to Larry Ausubel and especially to Peter Cramton for sharing their notes.
Agent Technology for e-Commerce Chapter 10: Mechanism Design Maria Fasli
Multi-unit auctions & exchanges (multiple indistinguishable units of one item for sale) Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Multi-unit auctions & exchanges (multiple indistinguishable units of one item for sale) Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Communication Networks A Second Course Jean Walrand Department of EECS University of California at Berkeley.
Truthfulness and Approximation Kevin Lacker. Combinatorial Auctions Goals – Economically efficient – Computationally efficient Problems – Vickrey auction.
Week 81 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz
Arbitrage in Combinatorial Exchanges Andrew Gilpin and Tuomas Sandholm Carnegie Mellon University Computer Science Department.
Collusion and the use of false names Vincent Conitzer
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
CPS 173 Mechanism design Vincent Conitzer
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Combinatorial Auctions By: Shai Roitman
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 21.
1 Ascending Auctions with Package Bidding By Larry Ausubel and Paul Milgrom October 27, 2001 This presentation reports research results. Some of the methods.
Mechanism Design CS 886 Electronic Market Design University of Waterloo.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Steffen Staab 1WeST Web Science & Technologies University of Koblenz ▪ Landau, Germany Network Theory and Dynamic Systems Auctions.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
AEA Continuing Education in Game Theory Avinash Dixit and David Reiley Session 6: Market Design and Algorithms David Reiley Yahoo! Research January 2011.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Lecture 4 on Auctions Multiunit Auctions We begin this lecture by comparing auctions with monopolies. We then discuss different pricing schemes for selling.
Auctions Supplemental Material. In case you haven't noticed: Auctions are Everywhere! eBay → simple auctions for a single item AdWord Auctions → advertisers.
مهندسي سيستم‌هاي تجارت الکترونیکی Electronic Commerce System Engineering (ECSE) رشته مهندسي فناوري اطلاعات- گرايش تجارت الکترونیکی دوره کارشناسی ارشد حضوری.
Comp/Math 553: Algorithmic Game Theory Lecture 10
False-name Bids “The effect of false-name bids in combinatorial
CPS Mechanism design Michael Albert and Vincent Conitzer
Multi-Item Auctions.
Comp/Math 553: Algorithmic Game Theory Lecture 09
Xinbing Wang*, Qian Zhang**
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Vincent Conitzer CPS Mechanism design Vincent Conitzer
Presentation transcript:

week 111 COS 444 Internet Auctions: Theory and Practice Spring 2009 Ken Steiglitz

week 112 Multi-unit demand auctions (Ausubel & Cramton 98, Morgan 01)Ausubel & Cramton 98Morgan 01 Examples: FCC spectrum, Treasury debt securities, Eurosystem: multiple, identical units Important questions: Efficiency (do items go to buyers who value them the most?); Pay-your- bid (discriminatory) prices vs. uniform-price; optimality of revenue The problem: conventional, uniform-price auctions provide incentives for demand- reduction

week 113 Multi-unit demand auctions Example 1: (Morgan) 2 units supply Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 Suppose bidders bid truthfully; rank bids: $10 bidder 1 10 bidder 1 8 bidder 2  first rejected bid, If buyers pay this, surplus (1) = $4 revenue = $16

week 114 Multi-unit demand auctions Example 1: But bidder 1 can do better! Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 Suppose bidder 1 reduces her demand: $10 bidder 1 for her first unit 8 bidder 2 for first unit 0 bidder 1 for her 2 nd unit  first rej. bid If buyers pay this, surplus (1) = $10 (larger) surplus (2) = $ 8 (larger) revenue = $ 0! … and auction is inefficient

week 115 Multi-unit demand auctions Thus, uniform price  demand reduction  inefficiency The most obvious generalization of the Vickrey auction (winners pay first rejected bid) is not incentive compatible and not efficient Lots of economists got this wrong!

week 116 Multi-unit demand auctions Ausubel & Cramton 98 prove, in a simplified model, that this example is not pathological: Proposition: Proposition: There is no efficient equilibrium strategy in a uniform-price, multi-unit demand auction. The appropriate generalization of the Vickrey auction is the Vickrey-Clark-Groves (VCG) mechanism… it turns out to be incentive- compatible

week 117 The VCG auction for multi-unit demand Return to example 1: 2 units supply Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 Suppose bidders bid truthfully, and order bids: $10 bidder 1 10 bidder 1 8 bidder 2 Award supply to the highest bidders … How much should each bidder pay?

week 118 The VCG auction for multi-unit demand Define:Define: social welfare = W (v) = maximum total value received by agents, where v is the vector of values Then the VCG payment of i is defined to be W( v -i ) − W -i (v) = welfare to others when bidder i drops out (bids 0), minus welfare to others when i bids truthfully = sum of highest k i rejected bids (if bidder i gets k i items) --- the “displaced” bids = her “externality” Notice: this reduces to Vickrey for single item

week 119 The VCG auction for multi-unit demand Example 1: Example 1: 2 units supply Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 If bidder 1 bids 0, welfare to others = $8, and is $0 when 1 bids truthfully…  1 pays $8 for the 2 items

week 1110 The VCG auction for multi-unit demand Example 2 Example 2: 3 units supply Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 Bidder 3: capacity 1, value $6 $10 bidder 1 10 bidder 1  bidder 1 gets 2 items 8 bidder 2  bidder 2 gets 1 item 6 bidder 3 Welfare to others when 1 bids 0 = $14 Welfare to others when 1 bids truthfully = $8  1 pays $6 for the 2 items

week 1111 The VCG auction for multi-unit demand Example 2 Example 2, con’t 3 units supply Bidder 1: capacity 2, values $10, $10 Bidder 2: capacity 1, value $8 Bidder 3: capacity 1, value bidder 1  bidder 1 gets 2 items 8 bidder 2  bidder 2 gets 1 item 6 bidder 3 Welfare to others when 2 bids 0 = $26 Welfare to others when 2 bids truthfully = $20  2 pays $6 for the 1 item (notice that revenue = $12 < $18 =3x$6 in uniform-price case, so not revenue optimal)

week 1112 Summary VCG mechanisms are efficient incentive-compatible (truthful is weakly dominant) …as we’ll see individually rational (nonnegative E[surplus]) max-revenue among all efficient mechanisms … but not optimal revenue in general, and prices are discriminatory, “murky”

week 1113 Combinatorial auctions In the most general kind of single-seller auction, there are multiple copies of multiple items for sale… we thus distinguish between multi-unit and multi-item auctions. Typically these come up in important situations like spectrum auctions, where buyers are interested in bundles of items that interact synergistically. The textbook example: a seller offers “left shoe”, “right shoe”, “pair”. Clearly, the pair is worth much more than the sum of values of each.

week 1114 Combinatorial auctions Here’s an example of common practice in real- estate auctions [Cramton, Shoham, Steinberg 06, p.1]: Individual lots are auctioned off Then packages are auctioned off If price(package) > Σprice(lots in package), then the package is sold as a unit; else the constituents are sold at their individual prices

week 1115 Combinatorial auctions The VCG mechanism generalizes to combinatorial auctions very nicely, which we now show. We follow L.M. Ausubel & P. Milgrom, “The lovely but lonely Vickrey auction,” in Combinatorial Auctions, P. Cramton, Y. Shoham, R.Steinberg (eds.), MIT Press, Cambridge, MA, Setup:

week 1116 Combinatorial auctions To illustrate notation: Suppose there are 4 bidders. The supply vector and a feasible assignment are: = (supply vector) x 1 = bidder 1 gets two of item 2, etc. x 2 = x 3 = x 4 =

week 1117 Combinatorial auctions Define the maximizing assignment x* by Each buyer n pays: α n is the max. possible welfare of others with bidder n absent, doesn’t depend on what bidder n reports in general relative to the reporting function of others …thus efficient if truthful

week 1118 Combinatorial auctions So in VCG (truthful bidding) the bidder pays the difference between the max. possible welfare of others with n absent (α n ), minus the welfare of others that results from the maximization with n present. You can think of this as the externality of bidder n, or, perhaps, the social cost of n’s presence.

week 1119 Combinatorial auctions Theorem:Theorem: In a VCG mechanism truthful bidding is dominant, and truthful bidding is efficient (maximizes total welfare). Proof:Proof: Fix everyone else’s report, (not necessarily truthful). Denote by x * and p * the allocation and payment when bidder n reports truthfully; and by and the allocation and payment when bidder n reports.

week 1120 Combinatorial auctions Bidder n’s surplus when she reports is which is n’s surplus when reporting truthfully. □

week 1121 Combinatorial auctions Bidder n’s surplus when she reports is which is n’s surplus when reporting truthfully. □ true value by def. of x * by def. of p * by def. of x ^

week 1122 Combinatorial auctions Ausubel & Milgrom 2006 discuss the virtues of the VCG mechanism (for general combinatorial auctions) : Very general (constraints easily incorporated) Truthful is a dominant strategy Efficient Maximum revenue among efficient mechanisms …Sounds good, but as we’ve seen, revenue can be disastrously low!

week 1123 Combinatorial auctions Weaknesses of VCG (for general combinatorial auctions): Low (or even zero) revenues Non-monotonicity of revenues as functions of no. of bidders and amounts bid Vulnerability to collusion of losing bidders Vulnerability to use of multiple bidding identities by a single bidder Prices are discriminatory Loses dominant-strategy property when values not private In general case bid expression, winner determination, payoff calculations become computationally intractable

week 1124 NP-complete in a nutshell (1) We think of problems as language-acceptance questions: a problem is a set of strings that describe YES-instances, and if there is a Turing machine that accepts that string in polynomial time, the problem is “easy”, that is, in P. Example: is node a connected to node b in a given graph? The class of problems NP are those problems whose YES- instances can be checked in polynomial time. Example: Does a given graph have a Hamilton circuit? Easy to check, hard to find! Cook’s theorem: All problems in NP reduce in poly. time to Boolean Satisfiability: does a given logical expression have a satisfying truth assignment? That is, if there is a fast algorithm for recognizing satisfiable expressions, then P=NP. Any problem in NP with this property is called NP- complete.

week 1125 NP-complete in a nutshell (2) See the list of NP-complete problems in wikipedia forthe list of NP-complete problems > 3000 such problems. It is widely believed that NP- complete problems are intractable in the sense of having no poly.-time algorithms. The usual way to show that a problem is NP-complete is to reduce a known NP-complete problem to it. By transitivity of reduction such a problem is as hard as any in NP. Example: SUBSET SUM: given a finite set of integers Α and a positive integer B, is there a subset of Α whose sum is precisely B ?

week 1126

week 1127 complexity classes P and NP may all be one class! (but everyone thinks P≠NP)

week 1128 Payment calculation in VCG is NP-complete Consider the step in VCG where the maximizing assignment is calculated: Formulate this as the recognition problem: Is there an assignment that achieves a given total value B ? SUBSET SUM clearly reduced to this; just make the values equal to the set members of Α and set the target value to B.

week 1129 An example of a (real) intractable auction Here’s a real example of an auction in which winner determination is intractable. It’s suggested by a comment on Frank Robinson’s mail-bid sale: “You can bid with a budget limit, or with alternate choices.” A coin dealer conducts an auction by mail as follows. She sends out an illustrated catalog describing n items k customers. Each customer then returns a list of integer bids for the items; that is, the maximum amount she is willing to spend for each item. (Bids may be 0.) In addition, the customer sends an integer limit, which is a limit on the total amount of money she is willing to spend on all the items she purchases. She wants to award items in such a way as to respect the bids, limits, and at the same time maximize the total revenue realized. (Proof of NP-completeness of winner determination is left as an exercise.)

week 1130 Single-seller auctions