Unit 5 - Chpt 13 & 17 - Equilibrium and Thermochemistry Part II

Slides:



Advertisements
Similar presentations
CHEMICAL EQUILIBRIUM. Chemical Equilibrium Reversible Reactions: A chemical reaction in which the products can react to re-form the reactants Chemical.
Advertisements

Chemical Equilibrium Chapter 15 AP CHEMISTRY
Equilibrium Unit 10 1.
Chemical Equilibrium AP Chem Unit 13.
CHEMICAL EQUILIBRIUM Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action.
ADVANCED PLACEMENT CHEMISTRY EQUILIBRIUM. Chemical equilibrium * state where concentrations of products and reactants remain constant *equilibrium is.
CHAPTER 14 CHEMICAL EQUILIBRIUM
Chapter 13 Chemical Equilibrium.
Chemical Equilibrium Chapter Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium.
Chemical Equilibrium - General Concepts (Ch. 14)
AP Chapter 15.  Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  It results in the formation of an equilibrium mixture.
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
Chapter 15 Chemistry the Central Science 12th Ed.
A.P. Chemistry Chapter 13 Equilibrium Equilibrium is not static, but is a highly dynamic state. At the macro level everything appears to have stopped.
Chapter 3 Chemical Equilibrium Atkins: Chapters 9,10,11
Chapter 14 Chemical Equilibrium
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemical Equilibrium The state where the concentrations of all reactants and products.
Chemical Equilibrium Introduction to the Law of Mass Action.
1 Chemical Equilibrium Chapter 13 AP CHEMISTRY. 2 Chemical Equilibrium  The state where the concentrations of all reactants and products remain constant.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Figure 13.1 A Molecular Representation of the Reaction 2NO 2 (g)      g) Over.
Chapter 16: Chemical Equilibrium- General Concepts WHAT IS EQUILIBRIUM?
EQUILIBRIUM CHEMICAL. Chemical Equilibrium Reversible Reactions: A chemical reaction in which the products can react to re-form the reactants Chemical.
Chemical Equilibrium Chapter 13.
Chemical Equilibrium The reversibility of reactions.
Chemical Equilibrium Introduction to Chemical Equilibrium Equilibrium Constants and Expressions Calculations Involving Equilibrium Constants Using.
Chapter 13 Chemical Equilibrium. Section 13.1 The Equilibrium Condition Copyright © Cengage Learning. All rights reserved 2 Chemical Equilibrium  The.
CHEMICAL EQUILIBRIUM notes.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical biological, or environmental processes that are reversible,
AP Chapter 15 Equilibrium *Chapters 15, 16 and 17 are all EQUILIBRIUM chapters* HW:
Chemical Equilibrium The reversibility of reactions.
Chapter AP Chem Chemical Equilibrium.
Chemical Equilibrium 4/24/2017.
Kinetics & Equilibrium Dr. Ron Rusay Fall 2001 © Copyright 2001 R.J. Rusay.
GOES WITH CHAPTER 17: SILBERBERG; PRINCIPLES OF GENERAL CHEMISTRY AP CHEMISTRY MRS. LAURA PECK Topic 12: Equilibrium 1.
Chapter 13 Chemical Equilibrium  The state where the concentrations of all reactants and products remain constant with time  Equilibrium is reached.
Chemistry 140 Chapter 8 Reaction Rates and Equilibrium Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1.
Chapter Thirteen: CHEMICAL EQUILIBRIUM.
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
Chapter 13 Chemical Equilibrium: How can things that are moving seem to be standing still?
Chapter 13 Chemical Equilibrium AP*. AP Learning Objectives  LO 6.1 The student is able to, given a set of experimental observations regarding physical,
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
Chapter 13 Chemical Equilibrium Chapter 13 Table of Contents Copyright © Cengage Learning. All rights reserved The Equilibrium Condition 13.2The.
EQUILIBRIUM CHEMICAL. Chemical Equilibrium Reversible Reactions: A chemical reaction in which the products can react to re-form the reactants Chemical.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Chapter 15: Chemical Equilibrium By: Ms. Buroker.
Chapter 9 Chemical Reactions. Section 9.4 Collision Theory and Chemical Reactions Copyright © Cengage Learning. All rights reserved 2 Molecular Collisions.
Chemical Equilibrium Chapter 13 4 out of 75 m/c Free Response: Required Every Year.
Chapter 13 Chemical Equilibrium Reversible Reactions REACTANTS react to form products. PRODUCTS then react to form reactants. BOTH reactions occur: forward.
Chemical Equilibrium Reactants Products Reactants Products As the time increases… [Reactants] decrease, so the rate of forward reaction decreases; [Products]
SSS 3 1 st Class General Equilibrium. Copyright © Cengage Learning. All rights reserved 2 Chemical Equilibrium The state where the concentrations of all.
Chemical Equilibrium. Unit Objectives  Define chemical equilibrium.  Explain the nature of the equilibrium constant.  Write chemical equilibrium expressions.
 Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  When the forward reaction equals the reverse reaction.  It results.
13.1 EQUILIBRIUM CONDITION CHEMICAL EQUILIBRIUM The state where the concentrations of all reactants and products remain constant with time. On the molecular.
Chapter 17 Equilibrium. Section 17.1 How Chemical Reactions Occur Return to TOC Copyright © Cengage Learning. All rights reserved 2 Collision Model Molecules.
Chemical Equilibrium Chapter – The Concept of Equilibrium Chemical Equilibrium = when the forward and reverse reactions proceed at equal rates.
Chapter 13 Chemical Equilibrium. Chapter 13 Table of Contents Copyright © Cengage Learning. All rights reserved The Equilibrium Condition 13.2The.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical biological, or environmental processes that are reversible,
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical biological, or environmental processes that are reversible,
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Solving Equilibrium Problems
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
The Extent of a Reaction
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Chapter Thirteen: CHEMICAL EQUILIBRIUM.
Presentation transcript:

Unit 5 - Chpt 13 & 17 - Equilibrium and Thermochemistry Part II Equilibrium basics Equilibrium Expressions with pressures Heterogeneous Equilibrium & Applications Le Chatelier’s Principle Thermo - Entropy and Free Energy HW set1: Chpt 13 - pg. 629-637, #10-14, 21ac, 22ac, 23ac, 24ac, 28, Due Thurs. Jan 17 HW set2: Chpt 13 #40, 43, 48, 52, 57, 63, 64 Due Wed Jan 23

Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is enormous activity. Equilibrium is not static, but is a highly dynamic situation. Macroscopically static  Microscopically dynamic

Concentration with time Changes in Concentration N2(g) + 3H2(g) 2NH3(g) Concentrations reach levels where the rate of the forward reaction equals the rate of the reverse reaction.

Rates with time The Changes with Time in the Rates of Forward and Reverse Reactions

Concept check equilibrium Consider an equilibrium mixture in a closed vessel reacting according to the equation: H2O(g) + CO(g) H2(g) + CO2(g) You add more H2O(g) to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer.

Consider the following reaction at equilibrium: jA + kB lC + mD A, B, C, and D = chemical species. Square brackets = concentrations of species at equilibrium. j, k, l, and m = coefficients in the balanced equation. K = equilibrium constant (given without units). l m [C] [D] K = [A] j [B] k

Equilibrium Expression Math Equilibrium expression for a reaction is the reciprocal of that for the reaction written in reverse. When balanced equation for a reaction is multiplied by a factor of n, the equilibrium expression for the new reaction is the original expression raised to the nth power; thus Knew = (Koriginal)n. K values are usually written without units.

K constant - more stuff K always has the same value at a given temperature regardless of the amounts of reactants or products that are present initially. For a reaction, at a given temperature, there are many equilibrium positions but only one value for K. Equilibrium position is a set of equilibrium concentrations. K involves concentrations. Kp involves pressures.

Equilibrium Expressions using Pressures N2(g) + 3H2(g) 2NH3(g)

Example problem N2(g) + 3H2(g) 2NH3(g) Equilibrium pressures at a certain temperature:

Example continued

Relationship between Kp & K Kp = K(RT)Δn Δn = sum of the coefficients of the gaseous products minus the sum of the coefficients of the gaseous reactants. R = 0.08206 L·atm/mol·K T = temperature (in kelvin) PV = nRT ; C in conc =n/V (molar volume) ; C = P/RT K expression plug in P/RT for each, derived pg 602-3

Calc K from Kp (last problem) N2(g) + 3H2(g) 2NH3(g) Using the value of Kp (3.9 × 104) from the previous example, calculate the value of K at 35°C.

Homogeneous Equilibria Homogeneous equilibria – involve the same phase: N2(g) + 3H2(g) 2NH3(g) HCN(aq) H+(aq) + CN-(aq)

Heterogeneous equilibria Heterogeneous equilibria – involve more than one phase: 2KClO3(s) 2KCl(s) + 3O2(g) 2H2O(l) 2H2(g) + O2(g)

Heterogeneous equilibrium (cont) The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present. The concentrations of pure liquids and solids are constant. 2KClO3(s) 2KCl(s) + 3O2(g)

Applications of Equilibrium Extent of a reaction A value of K much larger than 1 means that at equilibrium the reaction system will consist of mostly products – the equilibrium lies to the right. Reaction goes essentially to completion. A very small value of K means that the system at equilibrium will consist of mostly reactants – the equilibrium position is far to the left. Reaction does not occur to any significant extent.

Reaction Quotient - Q Apply the law of mass action using initial concentrations instead of equilibrium concentrations in K expression. Q = K; The system is at equilibrium. No shift will occur. Q > K; The system shifts to the left. Consuming products and forming reactants, until equilibrium is achieved. Q < K; The system shifts to the right. Consuming reactants and forming products, to attain equilibrium.

K vs Q graphic

Exercise - Applications ICE table ( Initial, Change, Equilibrium) Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #1: 6.00 M Fe3+(aq) and 10.0 M SCN-(aq) are mixed at a certain temperature and at equilibrium the concentration of FeSCN2+(aq) is 4.00 M. What is the value for the equilibrium constant for this reaction?

Trial 1 (cont) - ICE table Fe3+(aq) + SCN–(aq) FeSCN2+(aq) Initial 6.00 10.00 0.00 Change – 4.00 – 4.00 +4.00 Equilibrium 2.00 6.00 4.00 K = 0.333

Example 2 - trial 2 Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #2: Initial: 10.0 M Fe3+(aq) and 8.00 M SCN−(aq) (same temperature as Trial #1) use -x and +x for changes, then solve quadratic equation. Equilibrium: ? M FeSCN2+(aq)  5.00 M FeSCN2+

Example 3 - trial 3 Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Trial #3: Initial: 6.00 M Fe3+(aq) and 6.00 M SCN−(aq) ; use -x and +x for changes, then solve quadratic equation. Equilibrium: ? M FeSCN2+(aq) 3.00 M FeSCN2+

Solving Equilibrium Problems Write the balanced equation for the reaction. Write the equilibrium expression using the law of mass action. List the initial concentrations. Calculate Q, and determine the direction of the shift to equilibrium.

Solving Equilibrium Problems 5) Define the change needed to reach equilibrium, and define the equilibrium concentrations by applying the change to the initial concentrations. Substitute the equilibrium concentrations into the equilibrium expression, and solve for the unknown. Check your calculated equilibrium concentrations by making sure they give the correct value of K.

More practice (answers last slide) Consider the reaction represented by the equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq) Fe3+ SCN- FeSCN2+ Trial #1 9.00 M 5.00 M 1.00 M Trial #2 3.00 M 2.00 M 5.00 M Trial #3 2.00 M 9.00 M 6.00 M Find the equilibrium concentrations for all species.

Example - ICE ignore x A 1.00 mol sample of N2O4(g) is placed in a 10.0 L vessel and allowed to reach equilibrium according to the equation: N2O4(g) 2NO2(g) K = 4.00 x 10-4 Calculate the equilibrium concentrations of: N2O4(g) and NO2(g). Concentration of N2O4 = 0.097 M Concentration of NO2 = 6.32 x 10-3 M

Le Chatelier’s Principle If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.

Effects of changes on a system Concentration: The system will shift away from the added component. If a component is removed, the opposite effect occurs. 2. Temperature: K will change depending upon the temperature (endothermic – energy is a reactant; exothermic – energy is a product).

Effects of changes on a system Pressure: The system will shift away from the added gaseous component. If a component is removed, the opposite effect occurs. Addition of inert gas does not affect the equilibrium position. Decreasing the volume shifts the equilibrium toward the side with fewer moles of gas.

Change in volume effect on equilibrium ??

More practice answers Trial #1: [Fe3+] = 6.00 M; [SCN-] = 2.00 M; [FeSCN2+] = 4.00 M Trial #2: [Fe3+] = 4.00 M; [SCN-] = 3.00 M; [FeSCN2+] = 4.00 M Trial #3: [Fe3+] = 2.00 M; [SCN-] = 9.00 M; [FeSCN2+] = 6.00 M