DO’S AND DONT’S WITH LIKELIHOODS Louis Lyons Oxford (CDF)

Slides:



Advertisements
Similar presentations
Bayesian mixture models for analysing gene expression data Natalia Bochkina In collaboration with Alex Lewin, Sylvia Richardson, BAIR Consortium Imperial.
Advertisements

The Maximum Likelihood Method
1 BAYES and FREQUENTISM: The Return of an Old Controversy Louis Lyons Oxford University LBL, January 2008.
Hypothesis testing Another judgment method of sampling data.
27 th March CERN Higgs searches: CL s W. J. Murray RAL.
The Bayesian Effects in measurement of Asymmetry of Poisson Traffic Flows S.Bityukov (IHEP,Protvino),N.Krasnikov (INR RAS,Moscow), A.Kuznetsov(NEU,Boston),V.Smirnova.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #21.
1 LIMITS Why limits? Methods for upper limits Desirable properties Dealing with systematics Feldman-Cousins Recommendations.
CSC321: 2011 Introduction to Neural Networks and Machine Learning Lecture 10: The Bayesian way to fit models Geoffrey Hinton.
An Answer and a Question Limits: Combining 2 results Significance: Does  2 give  2 ? Roger Barlow BIRS meeting July 2006.
1 χ 2 and Goodness of Fit Louis Lyons IC and Oxford SLAC Lecture 2’, Sept 2008.
1 Do’s and Dont’s with L ikelihoods Louis Lyons Oxford and IC CDF IC, February 2008.
1 χ 2 and Goodness of Fit Louis Lyons Oxford Mexico, November 2006 Lecture 3.
1 Perspective of SCMA IV from Particle Physics Louis Lyons Particle Physics, Oxford (CDF experiment, Fermilab) SCMA IV Penn State.
8. Statistical tests 8.1 Hypotheses K. Desch – Statistical methods of data analysis SS10 Frequent problem: Decision making based on statistical information.
1 Do’s and Dont’s with L ikelihoods Louis Lyons Oxford CDF Mexico, November 2006.
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Slide 1 Statistics for HEP Roger Barlow Manchester University Lecture 3: Estimation.
1 Practical Statistics for Physicists Dresden March 2010 Louis Lyons Imperial College and Oxford CDF experiment at FNAL CMS expt at LHC
1 Do’s and Dont’s with L ikelihoods Louis Lyons Oxford CDF CERN, October 2006.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
1 Do’s and Dont’s with L ikelihoods Louis Lyons Oxford CDF Manchester, 16 th November 2005.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 41 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability.
5. Estimation 5.3 Estimation of the mean K. Desch – Statistical methods of data analysis SS10 Is an efficient estimator for μ ?  depends on the distribution.
A) Transformation method (for continuous distributions) U(0,1) : uniform distribution f(x) : arbitrary distribution f(x) dx = U(0,1)(u) du When inverse.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
1 Practical Statistics for Physicists Stockholm Lectures Sept 2008 Louis Lyons Imperial College and Oxford CDF experiment at FNAL CMS expt at LHC
Lecture II-2: Probability Review
AM Recitation 2/10/11.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
Statistical Decision Theory
G. Cowan 2009 CERN Summer Student Lectures on Statistics1 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability densities,
G. Cowan Lectures on Statistical Data Analysis Lecture 3 page 1 Lecture 3 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
Random Sampling, Point Estimation and Maximum Likelihood.
Lab 3b: Distribution of the mean
1 Practical Statistics for Physicists CERN Latin American School March 2015 Louis Lyons Imperial College and Oxford CMS expt at LHC
Statistical Decision Theory Bayes’ theorem: For discrete events For probability density functions.
BAYES and FREQUENTISM: The Return of an Old Controversy 1 Louis Lyons Imperial College and Oxford University CERN Summer Students July 2014.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
1 Introduction to Statistics − Day 3 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
G. Cowan Computing and Statistical Data Analysis / Stat 9 1 Computing and Statistical Data Analysis Stat 9: Parameter Estimation, Limits London Postgraduate.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
1 χ 2 and Goodness of Fit & L ikelihood for Parameters Louis Lyons Imperial College and Oxford CERN Summer Students July 2014.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
Paolo Massarotti Kaon meeting March 2007  ±  X    X  Time measurement use neutral vertex only in order to obtain a completely independent.
1 Practical Statistics for Physicists CERN Summer Students July 2014 Louis Lyons Imperial College and Oxford CMS expt at LHC
Ivo van Vulpen Why does RooFit put asymmetric errors on data points ? 10 slides on a ‘too easy’ topic that I hope confuse, but do not irritate you
Ch 1. Introduction Pattern Recognition and Machine Learning, C. M. Bishop, Updated by J.-H. Eom (2 nd round revision) Summarized by K.-I.
Crash course in probability theory and statistics – part 2 Machine Learning, Wed Apr 16, 2008.
The Probit Model Alexander Spermann University of Freiburg SoSe 2009
BAYES and FREQUENTISM: The Return of an Old Controversy
Chapter 14 Fitting Probability Distributions
The asymmetric uncertainties on data points in Roofit
χ2 and Goodness of Fit & Likelihood for Parameters
BAYES and FREQUENTISM: The Return of an Old Controversy
Confidence Intervals and Limits
Likelihoods 1) Introduction 2) Do’s & Dont’s
Model Inference and Averaging
Likelihoods 1) Introduction . 2) Do’s & Dont’s
Lecture 4 1 Probability (90 min.)
THE CLs METHOD Statistica per l'analisi dei dati – Dottorato in Fisica – XXIX Ciclo Alessandro Pistone.
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Introduction to Statistics − Day 4
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Statistics for HEP Roger Barlow Manchester University
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
Presentation transcript:

DO’S AND DONT’S WITH LIKELIHOODS Louis Lyons Oxford (CDF)

NORMALISATION OF L JUST QUOTE UPPER LIMIT  (ln L ) = 0.5 RULE L max AND GOODNESS OF FIT BAYESIAN SMEARING OF L USE CORRECT L (PUNZI EFFECT) DO’S AND DONT’S WITH L

NORMALISATION OF L data param e.g. Lifetime fit to t 1, t 2,………..t n t MUST be independent of  /1 Missing / )|(       t etP INCORRECT

2) QUOTING UPPER LIMIT “We observed no significant signal, and our 90% conf upper limit is …..” Need to specify method e.g. L Chi-squared (data or theory error) Frequentist (Central or upper limit) Feldman-Cousins Bayes with prior = const, “Show your L ” 1) Not always practical 2) Not sufficient for frequentist methods

x  x x0x0

COVERAGE If true for all : “correct coverage” P< for some “undercoverage” (this is serious !) P> for some “overcoverage” Conservative Loss of rejection power

COVERAGE How often does quoted range for parameter include param’s true value N.B. Coverage is a property of METHOD, not of a particular exptl result Coverage can vary with Study coverage of different methods of Poisson parameter, from observation of number of events n Hope for: Nominal value 100%

Great?Good?Bad L max Frequency L max and Goodness of Fit? Find params by maximising L So larger L max better than smaller L max So L max gives Goodness of Fit? Monte Carlo distribution of unbinned L max

Not necessarily: pdf L (data,params) param fixed vary L Contrast pdf(data,params) vary fixed e.g. data Max at t = 0 Max at p L

Example 1 Fit exponential to times t 1, t 2, t 3 ……. [Joel Heinrich, CDF] L = ln L max = -N(1 + ln t av ) i.e. Depends only on AVERAGE t, but is INDEPENDENT OF DISTRIBUTION OF t (except for……..) (Average t is a sufficient statistic) Variation of L max in Monte Carlo is due to variations in samples’ average t, but NOT TO BETTER OR WORSE FIT pdf Same average t same L max t

Example 2 L = cos θ pdf (and likelihood) depends only on cos 2 θ i Insensitive to sign of cosθ i So data can be in very bad agreement with expected distribution e.g. all data with cosθ < 0 and L max does not know about it. Example of general principle

Example 3 Fit to Gaussian with variable μ, fixed σ ln L max = N(-0.5 ln 2π – ln σ) – 0.5 Σ(x i – x av ) 2 /σ 2 constant ~variance(x) i.e. L max depends only on variance(x), which is not relevant for fitting μ (μ est = x av ) Smaller than expected variance(x) results in larger L max x Worse fit, larger L max Better fit, lower L max

L max and Goodness of Fit? Conclusion: L has sensible properties with respect to parameters NOT with respect to data L max within Monte Carlo peak is NECESSARY not SUFFICIENT (‘Necessary’ doesn’t mean that you have to do it!)

Binned data and Goodness of Fit using L -ratio  n i L = μ i L best  x ln[ L -ratio] = ln[ L / L best ] large μi -0.5  2 i.e. Goodness of Fit μ best is independent of parameters of fit, and so same parameter values from L or L -ratio Baker and Cousins, NIM A221 (1984) 437

L and pdf Example 1: Poisson pdf = Probability density function for observing n, given μ P(n;μ) = e -μ μ n /n! From this, construct L as L (μ;n) = e -μ μ n /n! i.e. use same function of μ and n, but pdf for pdf, μ is fixed, but for L, n is fixed μ L n N.B. P(n;μ) exists only at integer non-negative n L (μ;n) exists only as continuous fn of non-negative μ

 xample 2 Lifetime distribution pdf p(t;λ) = λ e -λt So L(λ;t) = λ e –λt (single observed t) Here both t and λ are continuous pdf maximises at t = 0 L maximises at λ = t . Functional  form of P(t) and L( λ) are different Fixed λ Fixed t p L t λ

Example 3: Gaussian N.B. In this case, same functional form for pdf and L So if you consider just Gaussians, can be confused between pdf and L So examples 1 and 2 are useful

Transformation properties of pdf and L Lifetime example: dn/dt = λ e –λt Change observable from t to y = √t So (a) pdf changes, BUT (b) i.e. corresponding integrals of pdf are INVARIANT

Now for L ikelihood When parameter changes from λ to τ = 1/λ (a’) L does not change dn/dt = 1/ τ exp{-t/τ} and so L ( τ;t) = L (λ=1/τ;t) because identical numbers occur in evaluations of the two L ’s BUT (b’) So it is NOT meaningful to integrate L (However,………)

CONCLUSION: NOT recognised statistical procedure [Metric dependent: τ range agrees with τ pred λ range inconsistent with 1/τ pred ] BUT 1) Could regard as “black box” 2) Make respectable by L Bayes’ posterior Posterior( λ) ~ L ( λ)* Prior( λ) [and Prior(λ) can be constant]

pdf(t; λ) L ( λ;t) Value of function Changes when observable is transformed INVARIANT wrt transformation of parameter Integral of function INVARIANT wrt transformation of observable Changes when param is transformed ConclusionMax prob density not very sensible Integrating L not very sensible

Getting L wrong: Punzi effect Giovanni PHYSTAT2003 “Comments on L fits with variable resolution” Separate two close signals, when resolution σ varies event by event, and is different for 2 signals e.g. 1) Signal 1 1+cos 2 θ Signal 2 Isotropic and different parts of detector give different σ 2) M (or τ) Different numbers of tracks  different σ M (or σ τ )

Events characterised by x i and  σ i A events centred on x = 0 B events centred on x = 1 L (f) wrong = Π [f * G(x i,0,σ i ) + (1-f) * G(x i,1,σ i )] L (f) right = Π [f*p(x i,σ i ;A) + (1-f) * p(x i,σ i ;B)] p(S,T) = p(S|T) * p(T) p(x i,σ i |A) = p(x i |σ i,A) * p(σ i |A) = G(x i,0,σ i ) * p(σ i |A) So L (f) right = Π[f * G(x i,0,σ i ) * p(σ i |A) + (1-f) * G(x i,1,σ i ) * p(σ i |B)] If p(σ|A) = p(σ|B), L right = L wrong but NOT otherwise

Giovanni’s Monte Carlo for A : G(x,0,   ) B : G(x,1   ) f A = 1/3 L wrong L right       f A  f  f A  f (3) (4) (0) 0   (6) (0)  0  1   (7) (2)   (9) (0) 0  1) L wrong OK for p    p   , but otherwise BIASSED  2) L right gives smaller  f  than L wrong  3) L right unbiassed, but L wrong biassed (enormously)!

Explanation of Punzi bias σ A = 1 σ B = 2 A events with σ = 1 B events with σ = 2 x  x  ACTUAL DISTRIBUTION FITTING FUNCTION [N A /N B variable, but same for A and B events] Fit gives upward bias for N A /N B because (i) that is much better for A events; and (ii) it does not hurt too much for B events

Another scenario for Punzi problem

Avoiding Punzi Bias Include p( σ|A) and p(σ|B) in fit (But then, for example, particle identification may be determined more by momentum distribution than by PID) OR Fit each range of σi separately, and add (N A ) i  (N A ) total, and similarly for B Incorrect method using L wrong uses weighted average of (f A )j, assumed to be independent of j