Be 同位体における Λ 粒子による核構造の変化 井坂政裕 ( 理研 ) 共同研究者:本間裕明,木村真明 ( 北大 )

Slides:



Advertisements
Similar presentations
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Advertisements

Influence of the neutron-pair transfer on fusion V. V. Sargsyan*, G. G. Adamian, N. V. Antonenko In collaboration with W. Scheid, H. Q. Zhang, D. Lacroix,
Structure of  hypernuclei with the antisymmetrized molecular dynamics method Masahiro Isaka (RIKEN)
Unified Studies of the exotic structures in 12 Be and the  + 8 He slow scattering Makoto Ito, Naoyuki Itagaki Theoretical Nuclear Physics Lab., RIKEN.
Patrick Achenbach U Mainz May 2o14. Fundamental symmetries in light hypernuclei.
Unified studies of light neutron-excess systems from bounds to continuum Makoto Ito Department of Pure and Applied Physics, Kansai University I. Introduction.
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
2/June/2014 Advances in Radioactive Isotope Science (ARIS2014) the University of Tokyo S. Watanabe A K. Minomo, M. Shimada, S. Tagami, B M. Kimura, C M.
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
Systematic study of the many- particle and many-hole states in and around the Island of Inversion - #N=Odd system - M. Kimura(Hokkaido)
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
F. Minato A, S. Chiba A, K. Hagino B A. Japan Atomic Energy Agency B. Tohoku Univ. Fission barrier of uranium including Λ hyperon Nucl.Phys.A831, 150 (2009)Nucl.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
1 Properties of hypernuclei in the Skyrme Hartree-Fock method Xian-Rong Zhou Department of physics, Xiamen University, Xiamen, China Present Status of.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
モンテカルロ殻模型による ベリリウム同位体の密度分布 T. Yoshida (a), N. Shimizu (a), T. Abe (b) and T. Otsuka (a, b) Center for Nuclear Study (a) and Department of Physics (b),
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Structure of neutron-rich Λ hypernuclei E. Hiyama (RIKEN)
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
Cluster Phenomena in Stable and Unstable Nuclei Cluster Phenomena in Stable and Unstable Nuclei Y. Kanada-En’yo (Kyoto Univ.) Collaborators: Y. Hidaka(RIKEN),
Five-body Cluster Structure of the double Λ hypernucleus 11 Be Emiko Hiyama (RIKEN) ΛΛ.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Deformations of sd and pf shell  hypernuclei with antisymmetrized molecular dynamics Masahiro Isaka (RIKEN)
Studies of hypernuclei with the AMD method Masahiro ISAKA Institute of Physical and Chemical Research (RIKEN) Focusing on 25  Mg, based on M. Isaka, M.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
Recent status in Hypernuclear Physics E. Hiyama (Nara Women’s Univ.)
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
g-ray spectroscopy of the sd-shell hypernuclei
Studies of light neutron-excess systems from bounds to continuum Makoto Ito Department of Pure and Applied Physics, Kansai University I. Introductions.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
Structure of light hypernuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Masahiro Isaka (RIKEN)
Tensor optimized shell model and role of pion in finite nuclei
Few-body aspect of hypernuclear physics
Few-body structure of light hypernuclei
Exotic nuclei beyond 132Sn: where do we stand?
Structure of neutron-rich Λ hypernuclei
Structure of few-body light Λ hypernuclei
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Structure of 10Be and 10B hypernuclei studied with four-body cluster model Λ Λ E. Hiyama (RIKEN) Submitted in PRC last August and waiting for referee’s.
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Three- and four-body structure of hypernuclei
Cluster and Density wave --- cluster structures in 28Si and 12C---
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Naoyuki Itagaki Yukawa Institute for Theoretical Physics
Osaka Institute of Technology
Presentation transcript:

Be 同位体における Λ 粒子による核構造の変化 井坂政裕 ( 理研 ) 共同研究者:本間裕明,木村真明 ( 北大 )

Structure study of  hypernuclei Study of light(s, p-shell)  hypernuclei Knowledge of  N effective interaction –Accurate solution of few-body problems [1] –  N G-matrix effective interactions [2] –Increases of experimental information [3] Development of theoretical models Through the study of unstable nuclei Ex.: Antisymmetrized Molecular Dynamics (AMD) [4] AMD describes dynamical changes of various structure No assumption on clustering and deformation [1] E. Hiyama, NPA 805 (2008), 190c, [2] Y. Yamamoto, et al., PTP Suppl. 117 (1994), 361., [3] O. Hashimoto and H. Tamura, PPNP 57 (2006), 564., [4] Y. Kanada-En’yo et al., PTP 93 (1995), 115. Systematic (theoretical) study of  hypernuclear structure “Structure changes by hyperon”

Structure of Be isotopes Be isotopes have 2  cluster structure –2  cluster structure is changed depending on the neutron number  2 config.  2 config.  config.  -orbit  -orbit “molecular-orbit” Y. Kanada-En’yo, et al., PRC60, (1999) N. Itagaki, et al., PRC , (2000).

Structure of 9 Be  9 Be has 2  + n structure The difference of the orbit of the last neutron leads to the difference of deformation 8 Be(0 + ) + n(p-orbit) Small deformation Centrifugal barrier due to L=1    8 Be(0 + ) + n(s-orbit) Large deformation No barrier   

Exotic structure of 11 Be  Parity inversion of the 11 Be 7 ground state The ground state of 11 Be is the   One of the reasons of the parity inversion is the molecular orbit structure of the 1/2+ and 1/2- states. Vanishing of the magic number N= Be   Extra neutrons in  orbit [1] (small deformation) 11 Be   Extra neutrons in  orbit [1] (large deformation) [1] Y. Kanada-En’yo and H. Horiuchi, PRC 66 (2002), Difference of deformation inversion

 binding energy as a function of   in s-orbit is deeply bound with smaller deformation Example: 13  C Binding energy of  12 C(Pos)⊗  (p) 12 C(Pos.)⊗  (s) 12 C(Neg)⊗  (s)  binding energy [MeV] Bing-Nan Lu, et al., PRC 84, (2011) M. T. Win and K. Hagino, PRC78, (2008) M. Isaka, et. al., PRC 83 (2011), C Pos. 12 C(Pos)⊗  (p) 12 C(Pos)⊗  (s) + 8.0MeV E energy (MeV) Energy curves of 13  C

Purpose of this study  Purpose of this study To reveal how  hyperon affects and modifies the low-lying states of Be isotopes with different deformation Examples: 10  Be: ground and 1/2+ resonance states of 9 Be 12  Be: abnormal parity ground state of 11 Be  Method HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei) –No assumption on 2  cluster structure –AMD has succeeded in the structure studies of Be isotopes YNG-interaction (NSC97f, NF)

Theoretical framework: HyperAMD We extended the AMD to hypernuclei  Wave function Nucleon part : Slater determinant Spatial part of single particle w.f. is described as Gaussian packet Single particle w.f. of  hyperon: Superposition of Gaussian packets Total w.f. : [1] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda and S. Nagata, Prog. Theor. Phys. Suppl. 117 (1994), 361. [2] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Prog. Theor. Phys. 97 (1997), 881.  N : YNG interaction (NSC97f, NF [ 1 ] ) NN : Gogny D1S  Hamiltonian HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Theoretical Framework ( AMD [1],[2] )  Procedure of the calculation Variational Calculation Imaginary time development method Variational parameters: Angular Momentum Projection Generator Coordinate Method(GCM) Superposition of the w.f. with different configuration Diagonalization of and [1] Y. Kanada-En’yo, H. Horiuchi and A. Ono, Phys. Rev. C 52 (1995), 628. [2] H. Matsumiya, K. Tsubakihara, M. Kimura, A. Doté and A. Ohnishi, To be submitted

Application to 9  Be hypernucleus [1] Bando et al., PTP 66 (1981) [2] M. May et al., PRL 51 (1983) 2085; H. Akikawa et al., PRL 88 (2002) [3] O. Hashimoto et al., NPA 639 (1998) 93c [1] [2] [3]

Level structure of 10  Be

Structure of 9 Be  9 Be has 2  + n structure The difference of the orbit of the last neutron leads to the difference of deformation 8 Be(0 + ) + n(p-orbit) Small deformation Centrifugal barrier due to L=1    8 Be(0 + ) + n(s-orbit) Large deformation No barrier    How does  hyperon modify the level structure with different deformation?

Excitation spectra of 10  Be Four-body cluster model

Excitation spectra of 10  Be Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012). Positive parity states in 10  Be are shifted up by  hyperon Four-body cluster model

 Shift up of the positive parity states  hyperon coupled to the 3/2 - state is more deeply bound due to the smaller deformation.  hyperon in s-orbit is deeply bound with small nuclear deformation Binding energy of  hyperon B  = 8.9 MeV  B  = 8.2 MeV  2.0 MeV 2.7 MeV     ⊗  s      ⊗  s  3/2  1/2    9 Be 10 Be  r = 2.55fm r = 2.46fm r = 2.94fm r = 2.82fm

Ground state parity of 12  Be

Exotic structure of 11 Be  Parity inversion of the 11 Be 7 ground state The ground state of 11 Be is the   One of the reasons of the parity inversion is the molecular orbit structure of the 1/2+ and 1/2- states. Vanishing of the magic number N= Be   Extra neutrons in  orbit [1] (small deformation) 11 Be   Extra neutrons in  orbit [1] (large deformation) [1] Y. Kanada-En’yo and H. Horiuchi, PRC 66 (2002), Difference of deformation inversion How does the  hyperon affect the parity-inverted ground state?

Excitation spectra of 11 Be  =0.52  = Be   11 Be   Parity reversion of the 12  Be ground state may occur by  in s orbit Deformation of the 1/2  state is smaller than that of the 1/2  state  hyperon in s orbit is deeply bound at smaller deformation 11 Be(AMD) 11 Be(Exp) 13 C(Exp)

Excitation spectra of 11 Be  =0.52  = Be   11 Be   Parity reversion of the 12  Be ground state may occur by  in s orbit Deformation of the 1/2  state is smaller than that of the 1/2  state  hyperon in s orbit is deeply bound with smaller deformation BB BB Reversion? 12  Be 11 Be(AMD) 11 Be(Exp) 13 C(Exp)

Results: Parity reversion of 12  Be  Ground state of 12  Be The parity reversion of the 12  Be g.s. occurs by the  hyperon Excitation Energy (MeV) 13 C 7 (Exp.) 11 Be 7 (Exp.) 11 Be 7 (AMD) 12  Be (HyperAMD)

Deformation and  binding energy  hyperon coupled to the   state is more deeply bound than that coupled to the   state –Due to the difference of the deformation between the   and   states B  = MeV B  = 9.67 MeV 0.32 MeV 0.25 MeV 1/2 +  1/2         ⊗  s      ⊗  s  11 Be (Calc.) 12 Be (Calc.)  r = 2.53 fm r = 2.69 fm r = 2.67 fm r = 2.51 fm

Glue-like role in 10  Be

Glue-like role of  hyperon in 10  Be Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012). The resonance (virtual) state 1/2+ will bound by adding  hyperon

Glue-like role of  hyperon in 10  Be Y. Zhang, E. Hiyama, Y. Yamamoto, NPA 881, 288 (2012). The resonance (virtual) state 1/2+ will bound by adding  hyperon

Summary  Summary To reveal how  hyperon affects and modifies the low-lying states of Be isotopes with different deformation, we applied the HyperAMD to 10  Be and 12  Be. We focus on the positive and negative parity states in 10  Be and 12  Be  hyperon coupled to compact state is more deeply bound – 10  Be: pos. parity states are shifted up by  hyperon – 12  Be: the parity reversion of the ground state will occur. In 10  Be, the resonance (virtual) state 1/2 + in 9 Be will be bound by  hyperon  Future plans To reveal how  hyperon affects the 2  clustering and orbit of extra neutrons To predict production cross section of 10  Be, 12  Be etc. Systematic structure study of Be hyper isotopes Consistent with the prediction of 13  C by Hiyama et al.