Relativistic equation of state at subnuclear densities in the Thomas- Fermi approximation Zhaowen Zhang Supervisor: H. Shen Nankai University 20th-22th.

Slides:



Advertisements
Similar presentations
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Mass Unified atomic mass unit u based on 12 C. Replaced both physical.
Advertisements

Basic Nuclear Properties
5.3.2 Fundamental Particles
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Stefan Rüster, Jürgen Schaffner-Bielich and Matthias Hempel Institut für theoretische Physik J. W. Goethe-Universität, Frankfurt International Workshop.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
The neutron radius of 208 Pb and neutron star structure. guitar nebula, neutron star bow wave.
Chiral symmetry breaking and structure of quark droplets
Spin polarization phenomena in dense nuclear matter Alexander Isayev Kharkov Institute of Physics and Technology Ukraine.
Construct an EOS for use in astrophysics: neutron stars and supernovae wide parameter range: proton fraction Large charge asymmetry: thus investigation.
Single Particle Energies
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Properties of nuclear matter in supenova explosions Igor Mishustin Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University Frankfurt.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
0 Yoko Ogawa (RCNP/Osaka) Hiroshi Toki (RCNP/Osaka) Setsuo Tamenaga (RCNP/Osaka) Hong Shen (Nankai/China) Atsushi Hosaka (RCNP/Osaka) Satoru Sugimoto (RIKEN)
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
1 11/20/ /10/2014 Jinniu Hu Stellar neutrino emission at finite temperature in relativistic mean field theory Jinniu Hu School of Physics, Nankai.
Limits of applicability of the currently available EoS at high density matter in neutron stars and core-collapse supernovae: Discussion comments Workshop.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Microscopic Modeling of Supernova Matter Igor Mishustin FIAS, J. W. Goethe University, Frankfurt am Main, Germany and National Research Center “Kurchatov.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.
Nucleon PDF inside Compressed Nuclear Matter Jacek Rozynek NCBJ Warsaw ‘‘Is it possible to maintain my volume constant when the pressure increases?” -
Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Clustered Quark Model Calculation of Strange Quark Matter Xuesen Na Department of Astronomy, School of Physics, PKU CSQCD II.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Relativistic EOS for Supernova Simulations
Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Hartree-Fock Method W.G.Newton 1,2, Bao-An Li 1, J.R.Stone 2,3 1 Texas.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Shalom Shlomo Cyclotron Institute Texas A&M University
Active lines of development in microscopic studies of
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
W.G.Newton1, J.R.Stone1,2 1University of Oxford, UK
Self-consistent theory of stellar electron capture rates
the CJT Calculation Beyond MFT and its Results in Nuclear Matter
Relativistic Chiral Mean Field Model for Finite Nuclei
Neutron Stars Aree Witoelar.
Aspects of the QCD phase diagram
Symmetry energy coefficients and shell gaps from nuclear masses
Variational Calculation for the Equation of State
Nuclear Size Depends on probe and relevant physics.
A possible approach to the CEP location
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Relativistic equation of state at subnuclear densities in the Thomas- Fermi approximation Zhaowen Zhang Supervisor: H. Shen Nankai University 20th-22th Oct KIAA at Peking University, Beijing, China Z. W. Zhang and H. Shen, Astrophys. J. 788, 185 (2014).

Motivation Methods Results Conclusion Background

Supernova explosions Neutron star formations Equation of state(EOS) of nuclear matter is very important in understanding many astrophysical phenomena: Lots of the EOS investigations focused on the case of zero temperature or high density for uniform matter.

Background G. Shen C. J. Horowitz S. Teige. PhysRevC, 82, (2010) The EOS for the core-collapse supernova simulations covers wide ranges of temperature, proton fraction, and baryon density. T=1 MeV T=3.16 MeV T=6.31 MeV T=10 MeV

Background … Lattimer–Swesty Compressible liquid-drop model Lattimer, J. M., & Swesty, F. D. Nucl. Phys. A, 535, 331 (1991) Some famous nuclear EOSs H. Shen etc. Parameterized Thomas– Fermi approximation Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. Prog. Theor. Phys., 100, 1013 (1998) G. Shen & Horowitz etc. Relativistic mean field theory G. Shen C. J. Horowitz S. Teige. PhysRevC, 83, (2011)

Background Parameterized Thomas–Fermi approximation Nucleon distribution function Gradient energy F 0 = 70 MeV fm 5 is determined by reproducing the binding energies and charge radii of finite nuclei.

Motivation Self-consistent Thomas–Fermi approximation Nucleon distribution and gradient energy are calculated self-consistently. Both droplet and bubble configurations are considered. bubbledroplet uniform matter In present work, we compare and examine the difference between PTF and STF.

Methods Lagrangian density Equations of motion Mean field approach

Methods Distribution function Fermi–Dirac distribution Chemical potential Wigner–Seitz cell BCC

Methods Thermodynamic quantities Entropy density Free energy Energy density

Methods Calculation T Y p ρ B R WS μ i σ 0 (r) ω 0 (r) ρ 0 (r) Nucleon distribution n i (r) σ(r) ω(r) ρ(r) A(r) n i (r) converge E cell S cell F cell Minimizing F cell by changing R WS Thermodynamically favored state YES NO Mmσmσ mωmω mρmρ gσgσ gωgω gρgρ g 2 (fm -1 )g3g3 c3c TM1 Parameter set Y. Sugahara and H. Toki, Nucl. Phys. A, 579, 557 (1994) different initial fields lead to different configuration

Results Strong Yp dependence T=1 T=10 Bubble appearance Delay the transition to uniform matter Free energy & Entropy Small difference

Results T=1 T=10 ρBρB The densities at the center are lower in the STF. The cell radius R c of STF is larger. More free nucleons exist outside the nuclei at T = 10 MeV. Nucleon distribution

Results Numbers & Fractions T=1 T=10 Nuclei fraction Neutron gas fraction Proton gas fraction T=1 T=10 Cause by difference of nucleon distribution More nucleons can drip out of the nuclei AdAd ZdZd AdAd ZdZd XAXA XAXA XnXn XnXn XpXp Dominant

Results T=1T=10 Y p =0.3 Y p =0.5 Neutron chemical potential The results of droplet are almost identical for STF and PTF. The sudden jumps caused by the different Coulomb potential of bubble and droplet.

Results T=1T=10 Y p =0.3 Y p =0.5 Proton chemical potential The difference of STF and PTF may be caused by the Coulomb and surface energies. Proton is directly effected by Coulomb interaction.

Conclusion Outlook 1.More pasta phases could be considered in STF. 2.Alpha particles will be included in the future.

Thank you!