Solar wind electron results by SWEA Andrea Opitz CESR, Toulouse, France J-A. Sauvaud, A. Fedorov, J. Luhmann, P. Louarn, B. Lavraud, P. Kellogg, C. T.

Slides:



Advertisements
Similar presentations
J. T. Gosling Laboratory for Atmospheric and Space Physics
Advertisements

Uncovering the Global Slow Solar Wind Liang Zhao and Thomas H. Zurbuchen Department of Atmospheric, Oceanic and Space Sciences, University of Michigan.
Cluster Reveals Properties of Cold Plasma Flow May 15, 2009 Erik Engwall.
The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
THREE-DIMENSIONAL ANISOTROPIC TRANSPORT OF SOLAR ENERGETIC PARTICLES IN THE INNER HELIOSPHERE CRISM- 2011, Montpellier, 27 June – 1 July, Collaborators:
Session A Wrap Up. He Abundance J. Kasper Helium abundance variation over the solar cycle, latitude and with solar wind speed Slow solar wind appears.
A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.
Origin of counter-streaming solar wind suprathermal electrons at solar minimum B. Lavraud, 1,2 A. Opitz, 1,2 J. T. Gosling, 3 A. P. Rouillard, 4 K. Meziane,
The recent solar minimum How unprecedent is the Sun's behavior? Andrea Opitz CESR (CNRS-UPS) University of Toulouse, France University of Bern, 17th November.
1 Diagnostics of Solar Wind Processes Using the Total Perpendicular Pressure Lan Jian, C. T. Russell, and J. T. Gosling How does the magnetic structure.
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
Five Spacecraft Observations of Oppositely Directed Exhaust Jets from a Magnetic Reconnection X-line Extending > 4.3 x 10 6 km in the Solar Wind Gosling.
Studying Solar Wind Magnetic Reconnection Events using the Cluster 4-point Measurement Capability A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, C. Forsyth.
J. T. Gosling LASP / University of Colorado Boulder, Colorado, USA
Magnetic Reconnection in the Solar Wind Gosling, Phan, et al.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of.
Accuracy of spacecraft measurements of solar wind plasma: Past, Present and Future John Podesta & John Steinberg Organizers Shine Workshop, July 6-10,
AMDA and CLweb Two complementary web-based services for spacecraft data exploitation with help from LESIA and support from CNES and CNRS Benoit Lavraud,
IMPACT Status and Data Updates SWG Pasadena, February 3-5, 2008 Janet Luhmann and Peter Schroeder for the IMPACT team.
IMPACT Status and Data Updates SWG, March 29, 2012 Janet Luhmann, Peter Schroeder, Dick Mewaldt, and Chris Russell for the IMPACT team.
Studying Solar Wind Magnetic Reconnection Events using Cluster. A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, I. J. Rae 1, C. Forsyth 1, E. Lucek 2, H.
SPATIAL AND TEMPORAL MONITORING OF THE INTERMITTENT DYNAMICS IN THE TERRESTRIAL FORESHOCK Péter Kovács, Gergely Vadász, András Koppán 1.Geological and.
Study of Local Heliospheric Current Sheet Variations from Multi-Spacecraft Observations D. Arrazola · J.J. Blanco · J. Rodríguez-Pacheco · M.A. Hidalgo.
Comparison of the 3D MHD Solar Wind Model Results with ACE Data 2007 SHINE Student Day Whistler, B. C., Canada C. O. Lee*, J. G. Luhmann, D. Odstrcil,
Case Studies of Interplanetary Coronal Mass Ejections Interplanetary Coronal Mass Ejections – Different Phases of the Cycle Of particular interest to the.
Solar Cycle Trends and Case Studies of Interplanetary Coronal Mass Ejections Interplanetary Coronal Mass Ejections During Different Phases of the Cycle.
Small Scale Magnetic Reconnection in the Solar Wind. A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, I. J. Rae 1, C. Forsyth 1, E. Lucek 2, H. Rème 3 1.UCL,
IMPACT Status and Data Updates SWG Dublin, March 2010 Janet Luhmann for the IMPACT team.
IMPRS June The principle of electrostatic analyzers Spherical deflection plates (radius R, plate distance d) with an applied voltage (U) let charged.
A new stationary analytical model of the heliospheric current sheet and the plasma sheet Roman Kislov IKI RAS 2015
Observatoire de Paris University of Minnesota University of California - Berkeley Goddard Space Flight Center STEREO SWG, Fall Hills, Meredith, NH STEREO/WAVES.
Small-scale transients in the slow solar wind during solar activity minimum K.E.J. Huttunen 1,2, J.G. Luhmann 1, J.T. Gosling 3, Y. Li 1, D. Larson 1,
PLASTIC Status Report Toni Galvin, Kristin Simunac, Mark Popecki, Berndt Klecker, Andrea Opitz and the PLASTIC Team Dublin SWG 2010.
5. Walen Test analysis The Walen Test results for Cluster 3 are as expected for a reconnection event. The test over the leading edge shows a positive correlation.
1 Abramenko V.I., 1 Yurchyshyn, V., 2 Linker, J., 2 Mikic, Z. 1 - Big Bear Solar Observatory of NJIT; 2 – Predictive Science Inc., San Diego Anomalous.
1 Interplanetary Magnetic Flux Enhancements as seen by STEREO C.T. Russell, L.K. Jian and J.G. Luhmann 18 th STEREO Science Working Group April Meudon,
IMPORTANCE OF FAST MEASUREMENTS OF SOLAR WIND PARAMETERS AT THE IP SHOCK FRONT Moscow, February 6-10, 2012 Z. Němeček, J. Šafránková, L. Přech, O. Goncharov,
Authors: S. Beyene1, C. J. Owen1, A. P. Walsh1, A. N. Fazakerley1, E
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
1 STEREO SWG: PLASTIC STATUS Toni Galvin (UNH) for the PLASTIC Team Special thanks to Lorna Ellis (Data), Mark Popecki (Ops) STEREO SWG Caltech Nov 13.
Dynamics of particles in the vicinity of the heliospheric current sheet: observations versus theory Olga Khabarova  Valentina Zharkova  Gang Li
Muedon SWG April STEREO SWG: PLASTIC STATUS Toni Galvin (UNH) for the PLASTIC Team Katherine Singer For the Operations Special thanks to Lorna.
SWT Overview 1 UCB, Nov15/16, 2006 Mirror site and services at CESR and CDPP Christian Jacquey, CDPP, CESR, Emmanuel Penou, CESR,
Intermittency Analysis and Spatial Dependence of Magnetic Field Disturbances in the Fast Solar Wind Sunny W. Y. Tam 1 and Ya-Hui Yang 2 1 Institute of.
1 SWG 19: Pasadena PLASTIC Status Report Toni Galvin M. Popecki, K. Simunac, B. Klecker L. Kistler, L. Ellis, C. Farrugia, E. Moebius, Y. Liu M. Lee, J.
Variability of the Heliospheric Magnetic Flux: ICME effects S. T. Lepri, T. H. Zurbuchen The University of Michigan Department of Atmospheric, Oceanic,
Centre for fusion, space and astrophysics Signatures of Outflowing Transients Adjacent to the Heliospheric Current Sheet Multi-spacecraft Observations.
Study of nano dust impacts on STEREO using the S/WAVES instrument A. Zaslavsky, N. Meyer-Vernet, K. Issautier, G. Le Chat and M. Maksimovic LESIA, Observatoire.
Studies of Solar Wind Structures Using STEREO Lan K. Jian 1, C.T. Russell 1, J.G. Luhmann 2, A.B. Galvin 3, K. Simunac 3 1 Inst. Geophysics & Planetary.
IMPACT Status and Data Updates SWG Meudon, April 21-22, 2008 Janet Luhmann, Peter Schroeder, and Chris Russell for the IMPACT team.
SEPT/STEREO Observations of Upstream Particle Events: Almost Monoenergetic Ion Beams A. Klassen, R. Gomez-Herrero, R. Mueller-Mellin and SEPT Team, G.
17 th November, 2005STEREO/Solar-B Workshop 1 Related Solar Imaging and Near-Earth In-situ Observations of an ICME A. N. Fazakerley 1, L.K. Harra 1, J.L.
PLASTIC Overview STEREO SWG 23 March A.B. Galvin & Team PLASTIC Instrument Status Operations (Popecki) –Includes DPU software update Publications.
IMPACT SWEA electron measurements and the temporal evolution of the solar wind Andrea Opitz CESR, Toulouse, France for the SWEA team and its supporters.
The heliospheric magnetic flux density through several solar cycles Géza Erdős (1) and André Balogh (2) (1) MTA Wigner FK RMI, Budapest, Hungary (2) Imperial.
Observations of spectral shapes of suprathermal H +, He + and He ++ G. Gloeckler Department of Atmospheric, Oceanic and Space Sciences University of Michigan,
Manuela Temmer Institute of Physics, University of Graz, Austria Tutorial: Coronal holes and space weather consequences.
Time-Dependence (structuring) of the Alpha-to-Proton Ratio (A He ) in the Solar Wind at 1 AU: Initial results, Implications, and Speculations Harlan E.
Poster X4.137 Solar Wind Trends in the Current Solar Cycle (STEREO Observations) A.B. Galvin* 1, K.D.C. Simunac 2, C. Farrugia 1 1.Space Science Center,
Magnetic cloud erosion by magnetic reconnection
Nicholeen Viall NASA/GSFC
George C. Ho1, David Lario1, Robert B. Decker1, Mihir I. Desai2,
The Structure of the HPS
Solar Wind Core Electrons
Evolution of solar wind structures between Venus and Mars orbits
Space weather at unmagnetized planets
Conveners: M. A. Dayeh (SwRI), R. Bucik (MPS/UG), and C. Salem (UCB)
A.B. Galvin*1, K.D.C. Simunac1, M.A. Popecki1, and C.J. Farrugia1
IMPACT Instrument Status
Presentation transcript:

Solar wind electron results by SWEA Andrea Opitz CESR, Toulouse, France J-A. Sauvaud, A. Fedorov, J. Luhmann, P. Louarn, B. Lavraud, P. Kellogg, C. T. Russell, D. Curtis, D. Larson, E. Penou, P. Schroeder, et al. SWG 2009 Fall, Meredith (NH)

Solar Wind Electron Analyzer (SWEA) STEREO (Kaiser et al., 2008) IMPACT (Luhmann et al., 2008) SWEA (Sauvaud et al., 2008) Sweep: eV

SWEA instrument status Instrument charging on tophat (~-4V)  SW electrons <45eV suppressed –No electron core distribution  –At low energies secondary electrons unveiled  –Excellent SW electron halo and strahl measurements  Data products –Calibrated SW electron energy spectra ( eV)  –Pitch angle distributions (SWEA + MAG & PLASTIC)  –Moments >45eV: density, temperature, heat flux vector  –Halo properties from fit  –Core density proxy: full time series after 2007 January  –Core temperature proxy: 2007Jan Febr and after 2009Apr 

Truncated SW electron spectrum SWEA Correctable down to ~ 45 eV Transmission (%)

Fit of SWEA data  core and halo density and temperature SWEA

Day of March 2007 Electron core density proxy Electron core temperature proxy STA STB Proton bulk velocity Solar wind bulk properties  density cross-calibration with SWAVES (Kellogg, Malaspina, Briand, Henri)

SWEA strahl vs. magnetic field

SWEA data site in Toulouse 

SWEA data products Public – present: plots of E spectra, PADs, moments >45eV (routinely produced by CL software at CESR) future: + ASCII (produced by CL software at CESR) and CDF (produced by Berkeley), halo fit results, core density and temperature proxies – CL software and SWEA binary data on server access by requesting password

SWEA calibration and scientific results SWEA calibrated PADs, halo properties, strahl, heat flux Core density and temperature proxies (Opitz and Fedorov) SWEA calibration paper (Fedorov, Opitz, Sauvaud et al.) Strahl temporal variability (Louarn et al.) Strahl - halo relationship (Opitz et al.) Small-scale transient (Rouillard et al.) Apparent layered structure of HCS (Foullon et al.) Interchange reconnection (Baker et al.) Reconnection and 90º PA depletion (Lavraud et al.) Temporal and spatial evolution of SW (Opitz et al.) SW prediction in the heliosphere (Opitz et al.) Terrestrial magnetotail (Sauvaud et al.)

Temporal variability of the ‘strahl’ Louarn et al, Solar Phys Study of the strahl : Observation of phase space density (PSD) fluctuations larger than 50 % at scales of ~ minutes - Particularly strong in high speed streams, following crossing of CIR. -Observed in conjunction with strong magnetic fluctuations. -Crucial that SWEA can do fast 3D measurements: can be demonstrated that the fluctuations are not an artifact due to changes in B direction -Burst mode measurements are being investigated. Fluctuations SW velocity P-A distributions (250 eV) Integrated flux of strahl STEREO A STEREO B One month of data

Solar wind  No depletion at ST-A Note: no depletion at ACE either  Clear, order of magnitude depletions at ST-B Pitch angle distributions Suprathermal electron depletion at 90° PA by Lavraud et al. (2009)

To correctly identify the HCS crossing(s), we use suprathermal electrons as sensors of magnetic topology. Multi-spacecraft study of substructures in the solar wind Attempt to resolve spatial scales and temporal variations Apparent layered structure of the HCS by Foullon et al Foullon et al. 2009, Sol. Phys.

STEREO timelag (Opitz et al.) Opitz et al. 2009, SolPhys PLASTIC velocity SWEA density STA STB

Temporal evolution of the solar wind PLASTIC velocity  0.5 day: ~ days: ~0.85 SWEA density  0.5 day: ~0.8 2 days: ~0.65 Opitz et al. 2009a, Solar Physics Opitz et al. 2009b, submitted at Sol. Phys.

SW prediction for heliosphere Opitz et al. 2009a, SolPhys August 2007 Opitz et al. 2009c, in prep.

SWEA publication list Sauvaud J-A., Larson D., Aoustin C., Curtis D., Medale J-L., Fedorov A.,Rouzaud., Luhmann J., Moreau T., Schroeder P., Louarn P., Dandouras I., and Penou E. The IMPACT Solar Wind Electron Analyzer (SWEA) Space Sci. Rev., vol. 136, p227, 2008 Rouillard A. P., Savani N. P., Davies J. A., Lavraud B., Forsyth R. J., Morley S. K., Opitz A., Sheeley N. R., Burlaga L. F., Sauvaud J-A., Simunac K. D. C., Luhmann J. G., Galvin A. B., Crothers S. R., Davis C. J., Harrison R. A., Lockwood M., Eyles C. J., Bewsher D., and Brown D. S. A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams Solar Physics, vol. 256, p307, 2009: DOI /s Lavraud B., Gosling J. T., Rouillard A. P., Fedorov A., Opitz A., Sauvaud J-A., Foullon C., Dandouras I., Genot V., Jacquey C., Louarn P., Mazelle C., Penou E., Phan T. D., Larson D. E., Luhmann J. G., Schroeder P., Skoug R. M., Steinberg J. T., and Russell C. T. Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 RE Solar Physics, vol. 256, p379, 2009 Louarn P., Dieval C., Genot V., Lavraud B., Opitz A., Fedorov A., Sauvaud J-A., Larson D., Galvin A., Acuna M. H., Luhmann J. On the temporal variability of the strahl and its relationship with solar wind characteristics: STEREO SWEA observations Solar Physics, vol. 259, p311, 2009: DOI /s Foullon C., Lavraud B., Wardle N. C., Owen C. J., Kucharek H., Fazakerley A. N., Larson D. E., Lucek E., Luhmann J. G., Opitz A., Sauvaud J-A., and Skoug R. M. The apparent layered structure of the heliospheric current sheet: multi- spacecraft observations Solar Physics, vol. 259, p389, 2009: DOI: /s Baker D., Rouillard A. P., van Driel-Gesztelyi L., Demoulin P., Harra L. K., Lavraud B., Davies J. A., Opitz A., Luhmann J. G., Sauvaud J-A., and Galvin A. B. Signatures of interchange reconnection: STEREO, ACE and Hinode observations combined Ann. Geophys., vol. 27, p3883, 2009 Lavraud B., Opitz A., Gosling J. T., Rouillard A. P., Meziane K., Sauvaud J-A., Fedorov A., Dandouras I., Genot V., Jacquey C., Louarn P., Mazelle C., Penou E., Larson D. E., Luhmann J. G., Schroeder P., Jian L., Russell C. T., Foullon C., Skoug R. M., Steinberg J. T., Simunac K. D. and Galvin A. B. Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations Ann. Geophys., submitted, 2009 Opitz A., Sauvaud J-A., Fedorov A., Wurz P., Luhmann J. G., Lavraud B., Russell C. T., Kellogg P., Briand C., Henri P., Malaspina D. M., Louarn P., Curtis D. W., Penou E., Karrer R., Galvin A. B., Larson D. E., Dandouras I., and Schroeder P. Temporal evolution of the solar wind electron core density at solar minimum by correlating the STEREO A and B SWEA measurements Solar Physics, submitted, 2009