Space-Charge Instabilities in Linacs. What limits the beam current in ion linacs? This is a very important topics for anyone designing linacs. For example,

Slides:



Advertisements
Similar presentations
MEBT Design Considerations The beam energy in the MEBT is sufficiently low for the space charge forces to have a considerable impact on the beam dynamics.
Advertisements

Equations of Tangent Lines
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Transverse optics 2: Hill’s equation Phase Space Emittance & Acceptance Matrix formalism Rende Steerenberg (BE/OP) 17 January 2012 Rende Steerenberg (BE/OP)
M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos.
5 May 2009MICE Analysis - MR1 The December Shifts: Beam Characterization by the Time of Flight System Mark Rayner.
Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik.
Yu. Senichev, Coloumb 2005, Italy1 HAMILTONIAN FORMALISM FOR HALO INVESTIGATION IN HIGH INTENSITY BEAM Yu. Senichev, IKP, FZJ.
CAS Chios, September LONGITUDINAL DYNAMICS Frank Tecker based on the course by Joël Le Duff Many Thanks! CAS on Intermediate Level Accelerator.
Quadrupole Transverse Beam Optics Chris Rogers 2 June 05.
Transverse Impedance Localization in SPS Ring using HEADTAIL macroparticle simulations Candidato: Nicolò Biancacci Relatore: Prof. L.Palumbo Correlatore.
Eric Prebys, FNAL.  Let’s look at the Hill’ equation again…  We can write the general solution as a linear combination of a “sine-like” and “cosine-like”
Transverse emittance Two different techniques were used to measure the transverse emittance. The multislit mask in the injector 9 MeV Quadrupole scan for.
Alessandra Lombardi BE/ ABP CERN
Analytical considerations for Theoretical Minimum Emittance Cell Optics 17 April 2008 F. Antoniou, E. Gazis (NTUA, CERN) and Y. Papaphilippou (CERN)
Electron cloud simulations for SuperKEKB Y.Susaki,KEK-ACCL 9 Feb, 2010 KEK seminar.
Page 1 J-M Lagniel ESS-Lund Feb 03, 2015 Resonances in linac beams Jean-Michel Lagniel (CEA/GANIL) Resonances are the main source of emittance growths.
MEIC Staged Cooling Scheme and Simulation Studies He Zhang MEIC Collaboration Meeting, 10/06/2015.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
K. Floettmann30 th Nov XFEL Injector matching The present XFEL injector foresees operation of the first four cavities of the first module to operate.
FNAL 8 GeV SC linac / HINS Beam Dynamics Jean-Paul Carneiro FNAL Accelerator Physics Center Peter N. Ostroumov, Brahim Mustapha ANL March 13 th, 2009.
Beam breakup and emittance growth in CLIC drive beam TW buncher Hamed Shaker School of Particles and Accelerators, IPM.
Zeuten 19 - E. Wilson - 1/18/ Slide 1 Recap. of Transverse Dynamics E. Wilson – 15 th September 2003  Transverse Coordinates  Relativistic definitions.
Module 5 A quick overview of beam dynamics in linear accelerators
Radio Frequency Quadrupole
Daniel Dobos Seminar: Chaos, Prof. Markus
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Hong Qin and Ronald C. Davidson Plasma Physics Laboratory, Princeton University US Heavy Ion Fusion Science Virtual National Laboratory
P. A. POSOCCO CERN – BE/ABP Intra-Beam stripping at SPL: should we be worried? 5 th SPL Collaboration meeting.
Lecture17(Course Summary).PPT - E. Wilson - 3/3/ Slide 1 COURSE SUMMARY A Design Study of a Compressor ring for A Neutrino Factory MT 2009 E. J.
INTENSITY LIMITATIONS IN THE LHC INJECTORS Discussion on Landau damping Ibon Santiago González Summer Student Session 2007.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Optimal Beamlines for Beams with Space Charge Effect S.V.Miginsky Budker Institute of Nuclear Physics, Novosibirsk, Russia.
The Heavy Ion Fusion Virtual National Laboratory Erik P. Gilson** PPPL 15 th International Symposium on Heavy Ion Fusion June 9 th, 2004 Research supported.
R. Miyamoto, MEBT Lattice Optimization, ESS AD Beam Physics Internal Review 1 MEBT Lattice Optimization Ryoichi Miyamoto (ESS) For Beam Physics Group,
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
Lecture 5 - E. Wilson - 6/29/ Slide 1 Lecture 5 ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Damping rings, Linear Collider School Linear beam dynamics overview Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN.
Lecture A3: Damping Rings
General Design of C-ADS Accelerator Physics
Linac4 Beam Characteristics
Progress in the Multi-Ion Injector Linac Design
Beam-beam effects in eRHIC and MeRHIC
Longitudinal Effects in Space Charge Dominated Cooled Bunched Beams
Multiturn extraction for PS2
Wednesday Week 1 Lecture
Beam-beam R&D for eRHIC Linac-Ring Option
Introduction to particle accelerators
Lecture 3 - Magnets and Transverse Dynamics I
Introduction to particle accelerators
Muon Inverse Rotation and Acceleration
Review of Accelerator Physics Concepts
STABILITY OF THE LONGITUDINAL BUNCHED-BEAM COHERENT MODES
Electron Rings Eduard Pozdeyev.
MEBT1&2 design study for C-ADS
Simulating transition crossing in the PS with HeadTail
Physics Design on Injector I
Electron beam dynamics
Accelerator Physics G. A. Krafft, A. Bogacz, and H. Sayed
Physics 417/517 Introduction to Particle Accelerator Physics
Lecture 5 ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
Accelerator Physics G. A. Krafft, A. Bogacz, and H. Sayed
Evgenij Kot XFEL beam dynamics meeting,
Lecture 5 ACCELERATOR PHYSICS MT 2015 E. J. N. Wilson.
Crab crossing plan Optimize the crabbing system for best beam stability and minimum emittance impact Study and specify tolerances on cavity multipole components.
Accelerator Physics G. A. Krafft, A. Bogacz, and H. Sayed
Multi-Ion Injector Linac Design – Progress Summary
Accelerator Physics Statistical Effects
EQUILIBRIA AND SYNCHROTRON STABILITY IN TWO ENERGY STORAGE RINGs*
Presentation transcript:

Space-Charge Instabilities in Linacs

What limits the beam current in ion linacs? This is a very important topics for anyone designing linacs. For example, it is important for beam dynamics design of RFQs. In general the beam current is limited by the focusing provided to confine the beam to within the aperture, balancing the defocusing effects of space charge and emittance. There are formulas that have been derived for this. In addition, there are some instabilities that must be avoided. That is what we will discuss.

What instabilities are important without space charge? The equation of transverse motion for periodic focusing arrays with linear quadrupoles or solenoids is known as Hills equation. x+K(s)x=0, where K(s)=K(s+L) is periodic with period L. Hills equation gives stable motion when phase advance per focusing period is 0 <180 deg. This is an instability that affects strongly-focused beams periodic focusing arrays. The other main instability without space charge is the parametric resonance when k =2k T. This affects nonrelativistic beams. Usually these two instabilities can easily be avoided. But avoiding instability for beams with space charge imposes additional restrictions.

The most important instability with space charge is the transverse- envelope instability This beam instability is a parametric resonance driven by the periodic-focusing lattice and mismatch oscillations of the beam. Free energy is available from the beam mismatch. See Martin Reiser, Theory and Design of Charged Particle Beams, Wiley VCH

Transverse collective modes in RF linacs Collective modes are charge-density oscillations in the beam. They are excited by beam mismatches and by the quadrupole or solenoid periodic-focusing lens array. Pure transverse modes are described by their azimuthal symmetry, such as monopole (1 st order) or breathing mode, quadrupole (2 nd order), sextupole (3 rd order), octupole(4 th order), … These modes can be either stable or unstable, and if unstable can generate significant emittance growth or beam losses.

Characterizing beams with space charge in linear periodic focusing arrays The importance of space charge in the beam is measured by the phase advances per focusing period and 0. These parameters are the same for every particle in the beam = the transverse phase advance per focusing period in degrees of the equivalent uniform beam* including space charge. depends on the net effect of both focusing and space charge. 0 = phase advance per focusing period of the beam without space charge. 0 depends on only the focusing. *The equivalent uniform beam is a uniform density beam with the same current and same rms properties as the real beam (which generally is not uniform).

Another useful quantity is the tune- depression ratio 0 Range of tune-depression ratio is / 0 > 0 / 0 =1 corresponds to no space charge, only focusing affects the beam. / 0 =0 corresponds to extreme space-charge limit where space charge is large enough to exactly cancel the focusing force.

Most important instability for beams with space charge is the envelope instability of the quadrupole mode. The stability criterion for the envelope instability depends on both 0, and Instability occurs when 0 >90 deg and <90 deg. This is more restrictive than the Hills equation instability. Simulations show that the envelope instability generates rapid and significant emittance growth and beam loss and must be avoided.

Must avoid >90 deg for high current beam design When 0 >90 deg and <90 deg, the envelope instability gives an unstable beam. It blows up in just a couple transverse oscillation periods. The envelope instability has been confirmed experimentally at LBNL and Maryland. The general practice for conservative design is to limit the external focusing strength so that 0 <90 deg.

Sextupole instability The sextupole instability can be excited when 0 >60 deg and <60 deg. This is a weak instability. Usually no observed emittance growth in simulations. Generally there is no design requirement from the sextupole instability to limit 0. However, at PAC09 the SNS people reported large emittance growth from the sextupole instability, attributed to their use of quadrupole lenses with dipole corrector magnets that gave a very large dodecapole component (factor of 3 higher than expected). This gave halo and beam loss in SNS a factor of 20 higher than expected. Can be corrected by reducing 0 from 60 deg to 50 deg. (See Y. Zhang, C.K.Allen, J.D.Galambos, J.Holmes, J.G.Wang, Beam Transverse Issues at the SNS Linac, PAC2009, Vancouver.)

Conclusions about transverse envelope instabilities The quadrupole or envelope instability can be avoided by keeping 0 <90 deg. The sextupole instability can be avoided by using high quality quadrupoles especially with small dodecapole component. Sextupole is also avoided by keeping 0 <60 deg, but that restricts the focusing strength. All other transverse modes are too weak to be of concern.

Another type of collective instability: Anisotropy instability leads to emittance transfer between transverse and longitudinal degrees of freedom Caused by space charge, and transverse-longitudinal coupling. Free energy is available when there are different temperatures for different degrees of freedom.

Space-charge coupling Instabilities for anisotropic beams Anisotropic beams are important for linacs because the transverse and longitudinal beam parameters are usually different. Thus, beam bunches are anisotropic. Even without space charge recall that the transverse and longitudinal motions are coupled through nonlinear effects., i.e. k =2k T. a) dependence of transverse RF defocusing on the longitudinal phase in the transverse equation. b) dependence of transit-time factor on radial displacement of beam in longitudinal equation (through the I 0 Bessel function).

Gluckstern (1966) showed that there is a parametric instability even with no space charge when k =2k t (or =2 t ) The wave number k means phase advance per unit length, and =kL where L is the period is the phase advance per focusing period. This coupling resonance is important when there is strong longitudinal focusing. You have to avoid this parametric resonance.

Physics with space charge Note that binary collisions of the particles play no significant role in the physics. The space-charge force, a smoothed or average effect over all the particles in the bunch, is what matters. When space charge is important, the physics is controlled by collective anisotropy resonances, which causes emittance transfer between planes.* * I. Hofmann et al., Space charge resonances in two and three dimensional anisotropic beams, Phys. Rev. ST-AB, 6, (2003)

Stability Plots of I. Hofmann, et al. The anisotropy resonancies are observed in a plot of the space-charge tune-depression ratio x / 0x (ordinate), a measure of the importance of space charge, versus the longitudinal to transverse tune ratio (abcissa) z / x. The tune ratio z / x allows identification of the anisotropy resonances. Resonances can occur when tune ratio is a ratio of integers.

Stability plots In Hofmanns publications the symbol is sometimes replaced by the symbol k. Both represent the wave number or phase advance per unit length. The stability plots are shown for constant values of the emittance ratio z / x, which is interpreted as the emittance ratio of the initial beam if the emittances change.

Stability plots (continued) The most prominent stop bands are located near tune ratios k z /k x = z / x =1/3, 1/2, 1, and 2, not all of which are always present. Equations of motion: Coupled equations of motion for x (transverse) and z (longitudinal) showing k x and k z phase advance per unit length in x and z. The functions f and g include space charge.

Stability plots (cont.) The stability plots show contours of constant calculated growth rates. The contours identify calculated stop bands (regions of exponential growth) that lie near tune ratios with integer tunes.

This shows stability plot for collective anisotropy resonances with analytically-calculated stop bands in plot of transverse tune depression versus tune ratio for z / x =2. Dashed line corresponds to equipartitioning where the ½ resonance is suppressed and no emittance transfer occurs. Resonances in this case are near 1/3, 1 and 2.

Energy equipartitioning and the energy anisotropy parameter Define energy-anisotropy parameter T a as ratio of average kinetic energies in any two degrees of freedom x and z. T a =1 gives equipartitioning. For emittance transfer between x and z requires unequal temperatures in x and z. Energy equipartitioning means equal temperatures in all three degrees of freedom, and therefore no emittance transfer is possible Equipartitioning is introduced, not because beams necessarily evolve to equipartitioned states, which they do not, but because equipartitioned beams (T a = 1) have no free energy for emittance transfer.

Stability plot for z / x =2 showing CERN SPL design trajectory points. Significant emittance transfer in simulation when trajectory overlaps the k z /k x =1 stop band. SPL short: Trajectory stays out of k z /k x =1 stop band. The simulation shows no emittance transfer Case 2: Trajectory overlaps with k z /k x =1 stop band. Simulation shows significant emittance transfer. (Longitudinal decreases from 0.75 to 0.56 mm-mrad. Transverse emittances increase from 0.4 to 0.5 mm-mrad.) SPL full: Very little overlap and very little emittance transfer as expected.

Stability plot for z / x =1.4 showing the SNS linac trajectory (above) and for z / x =1.3 for the proposed ESS linac (below). SNS trajectory (above) passes through stopbands near 1/3, 1/2, and 1. Simulation shows emittance growth only for k z /k x =1. Transverse emittance growth is +27%. Longitudinal growth is +3%. Other sources of nonlinearity affect longitudinal. ESS (below) has no emittance change in simulation..

How to minimize emittance transfer Simulations show that RMS emittance transfer is insignificant in nonequipartioned beams if the k z /k x =1 stop band is avoided. The other stop bands are too weak to matter. However, if the k z /k x =1 stopband cannot be avoided, an emittance ratio near unity (approximate equipartitioning ) would limit free energy for emittance transfer. In other words, significant emittance transfer requires overlap with k z /k x =1 stopband and an emittance ratio not near unity.

As space charge becomes stronger As space-charge tune depression becomes stronger (smaller tune-depression ratios and stronger space charge) the stop-band widths increase and overlap. The thermodynamic picture that anisotropic beams approach energy equipartitioning applies only close to the space-charge limit where stop bands completely overlap. Then emittance transfer occurs at all tune ratios.

A equipartitioning argument for many years has been resolved. Some argued that a nonequipartitioned beam would always equipartition at the expense of unwanted emittance transfer. They argued that the beam had to be equipartitioned to prevent emittance transfer. But, Hofmann et al. studies showed that equipartitioning is not a necessary condition to prevent emittance transfer. You can prevent emittance transfer if you can simply avoid the k z /k x =1 resonance, or minimize the time the beam is on that resonance.

Operating near the space-charge limit without emittance growth is very difficult Near the space-charge limit, other emittance growth mechanisms with free energy from beam mismatch or nonlinear field energy will dominate, and equipartitioning will not help. Thus, maintaining a bright beam at tune depression near the space charge limit remains a significant challenge.

Summary of space-charge instabilities in linacs To avoid the envelope instability require 0 <90 deg. To avoid the sextupole instability, minimize the dodecapole component of the quadrupole magnets, or require 0 <60 deg. To prevent emittance transfer avoid k z /k x =1 stopband or that is not possible, limit free energy for emittance transfer by approximate equipartitioning. The simple thermodynamic picture that anisotropic beams always approach energy equipartitioning applies only close to the space-charge limit where stop bands completely overlap. No one should operate there anyway!