Copyright © Cengage Learning. All rights reserved.

Slides:



Advertisements
Similar presentations
Make sure you have book and working calculator EVERY day!!!
Advertisements

Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
7 Applications of Integration
ABC Technology Project
Copyright © Cengage Learning. All rights reserved.
VOORBLAD.
Advance Mathematics Section 3.5 Objectives:
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
P Preparation for Calculus.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
© 2012 National Heart Foundation of Australia. Slide 2.
Quadratic Graphs and Completing the Square
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
25 seconds left…...
Exponential and Logarithmic Functions
Graphs of Other Trigonometric Functions
Exponential and Logarithmic Functions
Polynomial Functions of Higher Degree
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Trigonometric Functions
Rational Functions and Models
Januar MDMDFSSMDMDFSSS
Copyright © Cengage Learning. All rights reserved.
Chapter 2 Functions and Graphs
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
1 Functions and Applications
Copyright © Cengage Learning. All rights reserved.
Obtaining Information from Graphs
Graphs of Functions Lesson 3.
Copyright © Cengage Learning. All rights reserved. 1 Functions and Limits.
Copyright © Cengage Learning. All rights reserved.
Graphs of Functions. Text Example SolutionThe graph of f (x) = x is, by definition, the graph of y = x We begin by setting up a partial table.
2.3 Analyzing Graphs of Functions. Graph of a Function set of ordered pairs.
Copyright © Cengage Learning. All rights reserved. 1 Functions and Their Graphs.
Chapter 1 Functions and Graphs Copyright © 2014, 2010, 2007 Pearson Education, Inc More on Functions and Their Graphs.
Notes Over 2.3 The Graph of a Function Finding the Domain and Range of a Function. 1.Use the graph of the function f to find the domain of f. 2.Find the.
Copyright © Cengage Learning. All rights reserved. Pre-Calculus Honors 1.3: Graphs of Functions HW: p.37 (8, 12, 14, all, even, even)
Trig/Pre-Calculus Opening Activity
Chapter 2 Functions and Graphs Copyright © 2014, 2010, 2007 Pearson Education, Inc More on Functions and Their Graphs.
Copyright © Cengage Learning. All rights reserved. 1 Functions and Limits.
1.2 ANALYZING GRAPHS OF FUNCTIONS Copyright © Cengage Learning. All rights reserved.
Analyzing Graphs of Functions 1.5
Properties of Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Properties of Functions
Functions and Their Graphs
Chapter 2: Analysis of Graphs of Functions
Copyright © Cengage Learning. All rights reserved.
3.3 More on Functions; Piecewise-Defined Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Properties of Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. 1.3 Graphs of Functions Copyright © Cengage Learning. All rights reserved.

What You Should Learn Find the domains and ranges of functions and use the Vertical Line Test for functions Determine intervals on which functions are increasing, decreasing, or constant Determine relative maximum and relative minimum values of functions Identify and graph piecewise-defined functions Identify even and odd functions

The Graph of a Function

Example 1 – Finding the Domain and Range of a Function Use the graph of the function f shown below to find: (a) the domain of f, (b) the function values f (–1) and f (2), and (c) the range of f. Figure 1.18

Example 1 – Solution a. The closed dot at (–1, –5) indicates that x = –1 is in the domain of f, whereas the open dot at (4, 0) indicates that x = 4 is not in the domain. So, the domain of f is all x in the interval [–1, 4). Therefore, Domain = [-1,4) which includes -1, but not 4. b. Because (–1, –5) is a point on the graph of f, it follows that f (–1) = –5.

Example 1 – Solution cont’d Similarly, because (2, 4) is a point on the graph of f, it follows that f (2) = 4. c. Because the graph does not extend below f (–1) = –5 or above f (2) = 4, the range of is the interval [–5, 4]. Therefore, Range = [-5,4] which includes -5 and 4.

The Graph of a Function By the definition of a function, each x value may only correspond to one y value. It follows, then, that a vertical line can intersect the graph of a function at most once. This leads to the Vertical Line Test for functions.

Example 3 – Vertical Line Test for Functions Use the Vertical Line Test to decide whether the graphs in Figure 1.19 represent y as a function of x. (a) (b) Figure 1.19

Example 3 – Solution a. This is not a graph of y as a function of x because you can find a vertical line that intersects the graph twice. b. This is a graph of y as a function of x because every vertical line intersects the graph at most once.

Increasing and Decreasing Functions

Increasing and Decreasing Functions Consider the graph shown below. Moving from left to right, this graph falls from x = –2 to x = 0, is constant from x = 0 to x = 2, and rises from x = 2 to x = 4. Figure 1.20

Increasing and Decreasing Functions

Example 4 – Increasing and Decreasing Functions In Figure 1.21, determine the open intervals on which each function is increasing, decreasing, or constant. (a) (b) (c) Figure 1.21

Example 4 – Solution Although it might appear that there is an interval in which this function is constant, you can see that if x1 < x2, then (x1)3 < (x2)3, which implies that f (x1) < f (x2). This means that the cube of a larger number is bigger than the cube of a smaller number. So, the function is increasing over the entire real line.

Example 4 – Solution cont’d b. This function is increasing on the interval ( , –1), decreasing on the interval (–1, 1), and increasing on the interval (1, ). c. This function is increasing on the interval ( , 0), constant on the interval (0, 2), and decreasing on the interval (2, ).

Relative Minimum and Maximum Values

Relative Minimum and Maximum Values The points at which a function changes its increasing, decreasing, or constant behavior are helpful in determining the relative maximum or relative minimum values of the function.

Relative Minimum and Maximum Values Figure 1.22 shows several different examples of relative minima and relative maxima. Figure 1.22

Piecewise-Defined Functions

Example 8 – Sketching a Piecewise-Defined Function Sketch the graph of 2x + 3, x ≤ 1 –x + 4, x > 1 by hand. f (x) =

Example 8 – Solution Solution: This piecewise-defined function is composed of two linear functions. At and to the left of x = 1, the graph is the line given by y = 2x + 3. To the right of x = 1, the graph is the line given by y = –x + 4

Example 8 – Solution The two linear functions are combined and below. cont’d The two linear functions are combined and below. Notice that the point (1, 5) is a solid dot and the point (1, 3) is an open dot. This is because f (1) = 5. Figure 1.29

Even and Odd Functions

Even and Odd Functions A graph has symmetry with respect to the y-axis if whenever (x, y) is on the graph, then so is the point (–x, y). A graph has symmetry with respect to the origin if whenever (x, y) is on the graph, then so is the point (–x, –y). A graph has symmetry with respect to the x-axis if whenever (x, y) is on the graph, then so is the point (x, –y).

Even and Odd Functions A function whose graph is symmetric with respect to the y -axis is an even function. A function whose graph is symmetric with respect to the origin is an odd function.

Even and Odd Functions A graph that is symmetric with respect to the x-axis is not the graph of a function (except for the graph of y = 0). These three types of symmetry are illustrated in Figure 1.30. Symmetric to y-axis Even function Symmetric to origin Odd function Symmetric to x-axis Not a function Figure 1.30

Even and Odd Functions

Example 10 – Even and Odd Functions Determine whether each function is even, odd, or neither. a. g(x) = x3 – x b. h(x) = x2 + 1 c. f (x) = x3 – 1 Solution: a. This function is odd because g (–x) = (–x)3+ (–x) = –x3 + x = –(x3 – x) = –g(x).

Example 10 – Solution b. This function is even because h (–x) = (–x)2 + 1 = x2 + 1 = h (x). c. Substituting –x for x produces f (–x) = (–x)3 – 1 = –x3 – 1.

Example 10 – Solution Because f (x) = x3 – 1 and –f (x) = –x3 + 1 cont’d Because f (x) = x3 – 1 and –f (x) = –x3 + 1 you can conclude that f (–x)  f (x) f (–x)  –f (x). So, the function is neither even nor odd.