Polynomial Functions and Their Graphs

Slides:



Advertisements
Similar presentations
Aim: How do we find the zeros of polynomial functions?
Advertisements

Polynomial Functions.
Polynomial Functions and Graphs
Polynomial Functions and Their Graphs
Polynomial Functions.
Section 3.2 Polynomial Functions and Their Graphs.
MAT SPRING Polynomial Functions
POLYNOMIALS.
3.2 Polynomial Functions and Their Graphs
Graphs of Polynomial Functions
Polynomial Functions and Their Graphs
Write the equation for transformation of.
Ms. C. Taylor Common Core Math 3. Warm-Up Polynomials.
Polynomial Functions and Their Graphs
Warm-up 9/23/15. Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Polynomial Functions and Their.
Section 2.1 Complex Numbers. The Imaginary Unit i.
3.2 Graphs of Polynomial Functions of Higher Degree.
Polynomial Functions and Graphs. AAT-A IB - HR Date: 2/25/2014 ID Check Objective: SWBAT evaluate polynomial functions. Bell Ringer: Check Homework HW.
WARM-UP: 10/30/13 Find the standard form of the quadratic function. Identify the vertex and graph.
Sect. 2-3 Graphing Polynomial Functions Objectives: Identify Polynomial functions. Determine end behavior recognize characteristics of polynomial functions.
Essential Question: How do we decide for the degree of the polynomial with a variable? How do we determine the end behavior of a polynomial function?
Polynomial Functions.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
Quartic Polynomials Look at the two graphs and discuss the questions given below. Graph B Graph A 1. How can you check to see if both graphs are functions?
Functions. Objectives: Find x and y intercepts Identify increasing, decreasing, constant intervals Determine end behaviors.
Polynomial Functions and Their Graphs. Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,…, a 2, a 1, a 0, be real.
Copyright © Cengage Learning. All rights reserved.
Polynomial Functions Objectives: Identify Polynomials and their Degree
Section 3.2 Polynomial Functions and Their Graphs
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
LESSON 2–2 Polynomial Functions.
Polynomial and Rational Functions
Polynomial Functions and Graphs
Polynomial Functions and Their Graphs
Polynomial Functions.
Copyright © Cengage Learning. All rights reserved.
Polynomial Functions.
Smooth, Continuous Graphs
Pre-Calculus Section 2.2 Polynomial Functions of Higher Degree
Polynomial Functions 2.3.
6.1 & 6.2 Polynomial Functions
Polynomial Functions and Graphs
Section 3.2 Polynomial Functions and Their Graphs
Polynomial Functions and Graphs
2.2 Polynomial Functions of Higher Degree
Graphs of Polynomial Functions
Polynomial Functions.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Polynomial Functions and Their Graphs
Graph Polynomials Effect of Multiplicity on a graph
Polynomial Functions and Their Graphs
f (x) = anxn + an-1xn-1 +…+ a2x2 + a1x + a0
Polynomial Functions and Their Graphs
Section 2.3 Polynomial Functions and Their Graphs
Which of the following are polynomial functions?
Section 3.2 Polynomial Functions and Their Graphs
Zero’s, Multiplicity, and End Behaviors
Polynomial Functions and Graphs
Warm-up: Determine the left and right-hand behavior of the graph of the polynomial function, then find the x-intercepts (zeros). y = x3 + 2x2 – 8x HW:
Polynomial Functions.
Graph Polynomials Effect of Multiplicity on a graph
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Graphs of Polynomial Functions
Polynomial Functions and Graphs
Graphs of Polynomial Functions
Polynomial Functions and Graphs
Polynomial Functions and Their Graphs
Bellwork Reflection: Go through your notebook and list what you learned your First quarter. List what I should do as a teacher to make next quarter.
MAT SPRING Polynomial Functions
Presentation transcript:

Polynomial Functions and Their Graphs

Definition of a Polynomial Function Let n be a nonnegative integer and let an, an-1,…, a2, a1, a0, be real numbers with an ¹ 0. The function defined by f (x) = anxn + an-1xn-1 +…+ a2x2 + a1x + a0 is called a polynomial function of x of degree n. The number an, the coefficient of the variable to the highest power, is called the leading coefficient.

Smooth, Continuous Graphs Two important features of the graphs of polynomial functions are that they are smooth and continuous. By smooth, we mean that the graph contains only rounded curves with no sharp corners. By continuous, we mean that the graph has no breaks and can be drawn without lifting your pencil from the rectangular coordinate system. These ideas are illustrated in the figure. Smooth rounded corner x y

The Leading Coefficient Test As x increases or decreases without bound, the graph of the polynomial function f (x) = anxn + an-1xn-1 + an-2xn-2 +…+ a1x + a0 (an ¹ 0) eventually rises or falls. In particular, 1. For n odd: an > 0 an < 0 If the leading coefficient is positive, the graph falls to the left and rises to the right. If the leading coefficient is negative, the graph rises to the left and falls to the right. Rises right Falls left Falls right Rises left

The Leading Coefficient Test As x increases or decreases without bound, the graph of the polynomial function f (x) = anxn + an-1xn-1 + an-2xn-2 +…+ a1x + a0 (an ¹ 0) eventually rises or falls. In particular, 1. For n even: an > 0 an < 0 If the leading coefficient is positive, the graph rises to the left and to the right. If the leading coefficient is negative, the graph falls to the left and to the right. Rises right Rises left Falls left Falls right

Example of LCT Use the Leading Coefficient Test to determine the end behavior of the graph of Graph the quadratic function f (x) = x3 + 3x2 - x - 3. Falls left y Rises right x Solution Because the degree is odd (n = 3) and the leading coefficient, 1, is positive, the graph falls to the left and rises to the right, as shown in the figure.

Multiplicity and x-Intercepts If r is a zero of even multiplicity, then the graph touches the x-axis and turns around at r. If r is a zero of odd multiplicity, then the graph crosses the x-axis at r. Regardless of whether a zero is even or odd, graphs tend to flatten out at zeros with multiplicity greater than one.

Example on finding zeros Find all zeros of f (x) = -x4 + 4x3 - 4x2. Solution We find the zeros of f by setting f (x) equal to 0. -x4 + 4x3 - 4x2 = 0 We now have a polynomial equation. x4 - 4x3 + 4x2 = 0 Multiply both sides by -1. (optional step) x2(x2 - 4x + 4) = 0 Factor out x2. x2(x - 2)2 = 0 Factor completely. x2 = 0 or (x - 2)2 = 0 Set each factor equal to zero. x = 0 x = 2 Solve for x. multiplicity of 1 multiplicity of 2

Another Example Find the x-intercepts and multiplicity of f(x) = 2(x+2)2(x-3) Solution: x=-2 is a zero of multiplicity 2 or even x=3 is a zero of multiplicity 1 or odd

Graphing a Polynomial Function f (x) = anxn + an-1xn-1 + an-2xn-2 + ¼ + a1x + a0 (an ¹ 0) Use the Leading Coefficient Test to determine the graph's end behavior. Find x-intercepts by setting f (x) = 0 and solving the resulting polynomial equation. If there is an x-intercept at r as a result of (x - r)k in the complete factorization of f (x), then: a. If k is even, the graph touches the x-axis at r and turns around. b. If k is odd, the graph crosses the x-axis at r. c. If k > 1, the graph flattens out at (r, 0). 3. Find the y-intercept by setting x equal to 0 and computing f (0).

Example Graph: f (x) = x4 - 2x2 + 1. Solution Step 1 Determine end behavior. Because the degree is even (n = 4) and the leading coefficient, 1, is positive, the graph rises to the left and the right: Solution y x Rises left Rises right

Example cont. Graph: f (x) = x4 - 2x2 + 1. Solution Step 2 Find the x-intercepts (zeros of the function) by setting f (x) = 0. x4 - 2x2 + 1 = 0 (x2 - 1)(x2 - 1) = 0 Factor. (x + 1)(x - 1)(x + 1)(x - 1) = 0 Factor completely. (x + 1)2(x - 1)2 = 0 Express the factoring in more compact notation. (x + 1)2 = 0 or (x - 1)2 = 0 Set each factor equal to zero. x = -1 x = 1 Solve for x.

Example cont. Graph: f (x) = x4 - 2x2 + 1. Solution Step 2 We see that -1 and 1 are both repeated zeros with multiplicity 2. Because of the even multiplicity, the graph touches the x-axis at -1 and 1 and turns around. Furthermore, the graph tends to flatten out at these zeros with multiplicity greater than one: Rises left Rises right x y 1 1

Example cont. Graph: f (x) = x4 - 2x2 + 1. Solution Step 3 Find the y-intercept. Replace x with 0 in f (x) = -x + 4x - 1. f (0) = 04 - 2 • 02 + 1 = 1 There is a y-intercept at 1, so the graph passes through (0, 1). 1 Rises left Rises right x y 1 1

Example cont. Graph: f (x) = x4 - 2x2 + 1. Solution y x