3/2003 Rev 1 I.2.5 – slide 1 of 21 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 5Nuclear Stability.

Slides:



Advertisements
Similar presentations
Nuclear Chemistry.
Advertisements

Nuclear Fission and Fusion
IV. Isotopes 2 or more atoms of the same element having the same number of protons BUT different numbers of neutrons.
3/2003 Rev 1 I.2.9 – slide 1 of 35 Session I.2.9 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I – slide 1 of 33 Session I Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection.
4/2003 Rev 2 I.3.6 – slide 1 of 23 Session I.3.6 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 6Buildup and Shielding.
3/2003 Rev 1 I.2.7 – slide 1 of 35 Session I.2.7 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
4/2003 Rev 2 I.3.4 – slide 1 of 24 Session I.3.4 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 4Photon Interactions.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I.3.7 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 7Neutron Interactions Module I.3.7.
4/2003 Rev 2 I.2.4 – slide 1 of 9 Session I.2.4 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
4/2003 Rev 2 I.2.1 – slide 1 of 29 Session I.2.1 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I.2.12 – slide 1 of 18 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 12Statistics.
4/2003 Rev 2 I.4.3 – slide 1 of 29 Session I.4.3 Part I Review of Fundamentals Module 4Sources of Radiation Session 3Alpha, Beta, Gamma and Neutron Sources.
4/2003 Rev 2 I.4.5 – slide 1 of 40 Session I.4.5 Part I Review of Fundamentals Module 4Sources of Radiation Session 5Production of Isotopes, Safety and.
4/2003 Rev 2 I.2.2 – slide 1 of 13 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 2Excitation.
3/2003 Rev 1 I.2.6 – slide 1 of 43 Session I.2.6 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Modes.
4/2003 Rev 2 I.2.3 – slide 1 of 15 Session I.2.3 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I – slide 1 of 20 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Sessions 1-2Heavy Particles Session I
3/2003 Rev 1 I.2.8 – slide 1 of 31 Session I.2.8 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
IAEA Basic Nuclear Physics Basic Atomic Structure Day 1- Lecture 1 1.
3/2003 Rev 1 I.4.1 – slide 1 of 33 Part I Review of Fundamentals Module 4Sources of Radiation Session 1Terrestrial Radionuclides Module I.4.1 IAEA Post.
Aim: How are protons held together within the nucleus? Essential Questions : Why do certain elements undergo radioactive decay and others don’t? How do.
Aim: What is the half-life of a radioisotope Do Now:
Alpha, Beta, and Gamma Decay
Learning Targets I can name the force that holds the atom’s nucleus together I can describe the two reasons why some isotopes are radioactive. I can describe.
Basic Nuclear Physics - 3
4/2003 Rev 2 I.4.11 – slide 1 of 21 Session I.4.11 Part I Review of Fundamentals Module 4Sources of Radiation Session 11X-Ray Production IAEA Post Graduate.
3/2003 Rev 1 I – slide 1 of 33 Session I Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection.
3/2003 Rev 1 I.3.8&10 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 8&10Neutron Activation Session.
3/2003 Rev 1 I.2.7 – slide 1 of 35 Session I.2.7 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Nuclear Chemistry In a chemical reaction, the valence electrons are important. But the nuclei of elements may undergo changes as well. When the nuclei.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
Chemistry Chapter 4 Notes #3 (Sec 4). Unstable Nuclei Nuclear Reactions Nuclear Reactions –Rxns that involve a change in the nucleus of an atom (most.
Nuclear Decay Notes Stability Curve Atomic number Z Neutron number N Stable nuclei Z = N Nuclear particles are held.
4/2003 Rev 2 I.2.1 – slide 1 of 29 Session I.2.1 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
4/2003 Rev 2 I.4.10 – slide 1 of 25 Session I.4.10 Part I Review of Fundamentals Module 4Sources of Radiation Session 10Linear Accelerators, Cyclotrons.
4/2003 Rev 2 I.3.6 – slide 1 of 23 Session I.3.6 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 6Buildup and Shielding.
Radioactivity and Nuclear Energy Chapter 19 neFFc&feature=related.
Atoms and Isotopes the light bulb is a reminder
Nuclear Chemistry Objective: To explain the process of radioactive decay using nuclear equations and half life Essential Question: How do unstable (radioactive)
3/2003 Rev 1 I.3.8&10 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 8&10Neutron Activation Session.
4/2003 Rev 2 I.4.12 – slide 1 of 10 Session I.4.12 Part I Review of Fundamentals Module 4Sources of Radiation Session 12Filtration and Beam Quality IAEA.
3-4 Changes in the Nucleus
3/2003 Rev 1 I.2.6 – slide 1 of 43 Session I.2.6 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Modes.
3/2003 Rev 1 I.2.12 – slide 1 of 18 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 12Statistics.
4/2003 Rev 2 I.4.11 – slide 1 of 21 Session I.4.11 Part I Review of Fundamentals Module 4Sources of Radiation Session 11X-Ray Production IAEA Post Graduate.
3/2003 Rev 1 I.2.9 – slide 1 of 35 Session I.2.9 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Nuclear Transformations Objectives: 1. What determines the type of decay a radioisotope undergoes? 2. How much of a sample of a radioisotope remains after.
Nuclear Radiation Half-Life. What is Radiation? Penetrating rays and particles emitted by a radioactive source Result of a nuclear reaction! –Involves.
NUCLEAR CHEMISTRY THE ULTIMATE IN SPONTANEITY. Review Atomic number (Z) – number of protons Mass number (A) – sum of the protons and the neutrons Nuclides–
4/2003 Rev 2 I.4.4 – slide 1 of 13 Session I.4.4 Part I Review of Fundamentals Module 4Sources of Radiation Session 4Sealed and Unsealed Sources and Isotope.
3/2003 Rev 1 I.2.5 – slide 1 of 21 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 5Nuclear Stability.
3/2003 Rev 1 I.2.0 – slide 1 of 12 Session I.2.0 Part I Review of Fundamentals Module 2Introduction Session 0Part I Table of Contents IAEA Post Graduate.
Types of Radioactive Decay Kinetics of Decay Nuclear Transmutations
4/2003 Rev 2 I.2.3 – slide 1 of 15 Session I.2.3 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Prepared By: Shakil Raiman.  Atoms are made up of electrons, protons and neutrons.  The diameter of the nucleus is about 10,000 times smaller than the.
Fundamental Forces. Gravitational force - an attractive force that exists between all objects. The gravitational force between the center of the Earth.
3/2003 Rev 1 I – slide 1 of 20 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Sessions 1-2Heavy Particles Session I
Alpha and Beta Decay. Nuclear Reactions 1.Occur when nuclei emit particles and/or rays. 2.Atoms are often converted into atoms of another element. 3.May.
Lecture 7 The Atom and Elements Subatomic Particles Isotopes Radioactivity.
Integrated Science Mr. Danckers Chapter 10.
Nuclear Stability and Decay 1500 different nuclei are known. Only 264 are stable and do not decay. The stability of a nucleus depends on its neutron-to-
Islands of Stability.
Alpha and Beta Decay -Both naturally occurring and human-made isotopes can be either stable or unstable -Less stable isotopes of one element will undergo.
The Nucleus Objectives:
3/2003 Rev 1 I.2.8 – slide 1 of 31 Session I.2.8 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Nuclear Chemistry.
Presentation transcript:

3/2003 Rev 1 I.2.5 – slide 1 of 21 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 5Nuclear Stability and Radionuclides Module I.2.5 IAEA Post Graduate Educational Course Radiation Protection and Safety of Radiation Sources

3/2003 Rev 1 I.2.5 – slide 2 of 21 Introduction  Nuclear stability and unstable nuclei will be discussed  Students will learn about atomic structure, the line of stability, and radioactive or unstable nuclei

3/2003 Rev 1 I.2.5 – slide 3 of 21 Content  Nuclear stability  Unstable nuclei  Radionuclides

3/2003 Rev 1 I.2.5 – slide 4 of 21 Overview  The nuclear stability and unstable nuclei will be discussed  Some common radionuclides used in the nuclear industry will be discussed

3/2003 Rev 1 I.2.5 – slide 5 of 21 Nuclear Stability  A stable or non-radioactive nuclide is one whose atoms do not decay  If one plots the stable nuclei, an interesting pattern emerges (shown in next slide)  The graph in the next slide shows a plot of neutron number N vs atomic number Z for the stable nuclei

3/2003 Rev 1 I.2.5 – slide 6 of 21 N > Z The Line of Stability

3/2003 Rev 1 I.2.5 – slide 7 of 21 Nuclear Stability  For the heaviest stable nuclei, N is about 1.5 times Z  The presence of the extra neutrons overcomes the positively-charged protons’ tendency to repel each other and disrupt the nucleus  The nucleus is held together by a poorly understood force, the Nuclear Force

3/2003 Rev 1 I.2.5 – slide 8 of 21  The nuclear force is an extremely short- range force  It acts over a maximum distance of about two proton diameters  The nuclear force is responsible for the binding energy that holds the nucleus together Nuclear Stability

3/2003 Rev 1 I.2.5 – slide 9 of 21  Nuclei which do not fall on the line of stability tend to be unstable or “radioactive”  They are called “radionuclides”  A few radionuclides do fall on the line of stability but their rate of decay is so slow that for all practical purposes they are stable Unstable Nuclei

3/2003 Rev 1 I.2.5 – slide 10 of 21  Radionuclides undergo a process called radioactive transformation or disintegration  In this process, the nucleus emits particles to adjust its neutron (N) to proton (Z) ratio  This change in the N to Z ratio tends to move the radionuclide toward the line of stability Unstable Nuclei

3/2003 Rev 1 I.2.5 – slide 11 of 21 Some Common Radionuclides  Naturally occurring 235 U and 238 U  60 Co, 137 Cs, 90 Sr found in nuclear power plants  192 Ir used in radiography  99m Tc used in nuclear medicine  131 I used in treatment of thyroid conditions

3/2003 Rev 1 I.2.5 – slide 12 of 21 Summary  Principles of nuclear stability were discussed  Unstable nuclei were discussed  Some common radionuclides were listed

3/2003 Rev 1 I.2.5 – slide 13 of 21 Where to Get More Information  Cember, H., Johnson, T.E., Introduction to Health Physics, 4th Edition, McGraw-Hill, New York (2008)  Martin, A., Harbison, S. A., Beach, K., Cole, P., An Introduction to Radiation Protection, 6 th Edition, Hodder Arnold, London (2012)  Jelley, N. A., Fundamentals of Nuclear Physics, Cambridge University Press, Cambridge (1990)  Firestone, R.B., Baglin, C.M., Frank-Chu, S.Y., Eds., Table of Isotopes (8 th Edition, 1999 update), Wiley, New York (1999)