Public Key Infrastructure – tell me in plain English AND THEN deep technical how PKI works Steve Lamb stephlam@microsoft.com http://blogs.technet.com/steve_lamb.

Slides:



Advertisements
Similar presentations
Public Key Infrastructure and Applications
Advertisements

Public Key Infrastructure A Quick Look Inside PKI Technology Investigation Center 3/27/2002.
NSRC Workshop Some fundamental security concerns... Confidentiality - could someone else read my data? Integrity - has my data been changed? Authentication.
A-to-Z of Public Key Infrastructure (PKI)
Mostly borrowed & updated from Steve Lamb in Microsoft Land….
Chapter 9: Using and Managing Keys Security+ Guide to Network Security Fundamentals Second Edition.
An understanding of PKI and some deployment hints BY Charles Anakweze CIS532 PKI = Public Key Infrastructure.
Block Ciphers: Workhorses of Cryptography COMP 1721 A Winter 2004.
Network Security – Part 2 Public Key Cryptography Spring 2007 V.T. Raja, Ph.D., Oregon State University.
BY MUKTADIUR RAHMAN MAY 06, 2010 INTERODUCTION TO CRYPTOGRAPHY.
Apr 22, 2003Mårten Trolin1 Agenda Course high-lights – Symmetric and asymmetric cryptography – Digital signatures and MACs – Certificates – Protocols Interactive.
Symmetric Key Distribution Protocol with Hybrid Crypto Systems Tony Nguyen.
Presented by Xiaoping Yu Cryptography and PKI Cosc 513 Operating System Presentation Presented to Dr. Mort Anvari.
Public Key Infrastructure – Deep Dive PKI session SHOWING you how to embrace PKI Steve Lamb
Steve Lamb IT Pro Evangelist Microsoft Ltd What Do I Need To Know About PKI To.
03 December 2003 Public Key Infrastructure and Authentication Mark Norman DCOCE Oxford University Computing Services.
Introduction to Public Key Infrastructure (PKI) Office of Information Security The University of Texas at Brownsville & Texas Southmost College.
Network Security – Part 2 V.T. Raja, Ph.D., Oregon State University.
Public Key Cryptography RSA Diffie Hellman Key Management Based on slides by Dr. Lawrie Brown of the Australian Defence Force Academy, University College,
TrustPort Public Key Infrastructure. Keep It Secure Table of contents  Security of electronic communications  Using asymmetric cryptography.
C HAPTER 13 Asymmetric Key Cryptography Slides adapted from "Foundations of Security: What Every Programmer Needs To Know" by Neil Daswani, Christoph Kern,
Introduction to Public Key Cryptography
Cryptography and Network Security Chapter 11 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography 101 Frank Hecker
CSCI 6962: Server-side Design and Programming
Sorting Out Digital Certificates Bill blog.codingoutloud.com ··· Boston Azure ··· 13·Dec·2012 ···
Public Key Cryptography July Topics  Symmetric and Asymmetric Cryptography  Public Key Cryptography  Digital Signatures  Digital Certificates.
DNSSEC Cryptography Review Track 2 Workshop July 3, 2010 American Samoa Hervey Allen.
1 Introduction to Security and Cryptology Enterprise Systems DT211 Denis Manley.
Network Security. An Introduction to Cryptography The encryption model (for a symmetric-key cipher).
.Net Security and Performance -has security slowed down the application By Krishnan Ganesh Madras.
Lecture 19 Page 1 CS 111 Online Symmetric Cryptosystems C = E(K,P) P = D(K,C) E() and D() are not necessarily the same operations.
E-Commerce Security Technologies : Theft of credit card numbers Denial of service attacks (System not availability ) Consumer privacy (Confidentiality.
Network Security. Security Threats 8Intercept 8Interrupt 8Modification 8Fabrication.
每时每刻 可信安全 1The DES algorithm is an example of what type of cryptography? A Secret Key B Two-key C Asymmetric Key D Public Key A.
Symmetric versus Asymmetric Cryptography. Why is it worth presenting cryptography? Top concern in security Fundamental knowledge in computer security.
Cryptography  Why Cryptography  Symmetric Encryption  Key exchange  Public-Key Cryptography  Key exchange  Certification.
Chapter 9: Using and Managing Keys Security+ Guide to Network Security Fundamentals Second Edition.
Cryptography Encryption/Decryption Franci Tajnik CISA Franci Tajnik.
Cryptography, Authentication and Digital Signatures
CSCE 201 Introduction to Information Security Fall 2010 Data Protection.
ITIS 1210 Introduction to Web-Based Information Systems Chapter 50 Cryptography, Privacy, and Digital Certificates.
Digital Envelopes, Secure Socket Layer and Digital Certificates By: Anthony and James.
Introduction to Public Key Infrastructure January 2004 CSG Meeting Jim Jokl.
1 Securing Data and Communication. 2 Module - Securing Data and Communication ♦ Overview Data and communication over public networks like Internet can.
Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze Unit OS8: File System 8.3. Encrypting File System Security.
1 Information Security Practice I Lab 5. 2 Cryptography and security Cryptography is the science of using mathematics to encrypt and decrypt data.
Encryption. What is Encryption? Encryption is the process of converting plain text into cipher text, with the goal of making the text unreadable.
Public / Private Keys was a big year… DES: Adopted as an encryption standard by the US government. It was an open standard. The NSA calls it “One.
Public Key Encryption.
Chapter 8 – Network Security Two main topics Cryptographic algorithms and mechanisms Firewalls Chapter may be hard to understand if you don’t have some.
Cryptography 1 Crypto Cryptography 2 Crypto  Cryptology  The art and science of making and breaking “secret codes”  Cryptography  making “secret.
Security fundamentals Topic 4 Encryption. Agenda Using encryption Cryptography Symmetric encryption Hash functions Public key encryption Applying cryptography.
Network Security Continued. Digital Signature You want to sign a document. Three conditions. – 1. The receiver can verify the identity of the sender.
Electronic Commerce School of Library and Information Science PGP and cryptography I. What is encryption? Cryptographic systems II. What is PGP? How does.
Private key
Lecture 11 Overview. Digital Signature Properties CS 450/650 Lecture 11: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Lecture 9 Overview. Digital Signature Properties CS 450/650 Lecture 9: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Secure Instant Messenger in Android Name: Shamik Roy Chowdhury.
This courseware is copyrighted © 2016 gtslearning. No part of this courseware or any training material supplied by gtslearning International Limited to.
ENGR 101 Compression and Encryption. Todays Lecture  Encryption  Symmetric Ciphers  Public Key Cryptography  Hashing.
Encryption and Security Tools for IA Management Nick Hornick COSC 481 Spring 2007.
CRYPTOGRAPHY Cryptography is art or science of transforming intelligible message to unintelligible and again transforming that message back to the original.
Hervey Allen Phil Regnauld 15 June 2009 Papeete, French Polynesia DNSSEC Tutorial: Public / Private.
Digital Signatures Last Updated: Oct 14, 2017.
Security through Encryption
Presentation transcript:

Public Key Infrastructure – tell me in plain English AND THEN deep technical how PKI works Steve Lamb stephlam@microsoft.com http://blogs.technet.com/steve_lamb IT Pro Security Evangelist Microsoft Ltd

Objectives Demystify commonly used terminology Explain how PKI works Get you playing with PKI in the lab Make some simple recommendations

Agenda Foundational Concept (level 200) PKI and Signatures (level 330) Recommendations (level 310) Reference material Common Algorithms (level 360)

What can PKI enable? Secure Email – sign and/or encrypt messages Secure browsing – SSL – authentication and encryption Secure code – authenticode Secure wireless – PEAP & EAP-TLS Secure documents – Rights Management Secure networks – segmentation via IPsec Secure files – Encrypted File System(EFS)

Foundational Concepts

Encryption vs. Authentication Encrypted information cannot be automatically trusted You still need authentication Which we can implement using encryption, of course

Assets What we are securing? This session is not about securing: Data Services (i.e. business etc. applications or their individually accessible parts) This session is not about securing: People (sorry), cables, carpets, typewriters and computers (!?) Some assets are key assets Passwords, private keys etc…

Digital Security as Extension of Physical Security of Key Assets Strong Physical Security of KA Strong Digital Security Good Security Everywhere Weak Physical Security of KA Strong Digital Security Insecure Environment Strong Physical Security of KA Weak Digital Security Insecure Environment

Remember CP and CPS! “The Certification Practice & Certification Practice Statement (CP/CPS) is a formal statement that describes who may have certificates, how certificates are generated and what they may be used for.” http://www.nhsia.nhs.uk/pathology/pages/documents/cp_cps.doc

Symmetric Key Cryptography Plain-text input Cipher-text Plain-text output “The quick brown fox jumps over the lazy dog” “The quick brown fox jumps over the lazy dog” “AxCv;5bmEseTfid3)fGsmWe#4^,sdgfMwir3:dkJeTsY8R\s@!q3%” Encryption Decryption Same key (shared secret)

Symmetric Pros and Cons Strength: Simple and really very fast (order of 1000 to 10000 faster than asymmetric mechanisms) Super-fast (and somewhat more secure) if done in hardware (DES, Rijndael) Weakness: Must agree the key beforehand Securely pass the key to the other party

Public Key Cryptography Knowledge of the encryption key doesn’t give you knowledge of the decryption key Receiver of information generates a pair of keys Publish the public key in a directory Then anyone can send him messages that only she can read

Public Key Encryption Recipient’s private key Recipient’s public key Clear-text Input Cipher-text Clear-text Output “The quick brown fox jumps over the lazy dog” “The quick brown fox jumps over the lazy dog” “Py75c%bn&*)9|fDe^bDFaq#xzjFr@g5=&nmdFg$5knvMd’rkvegMs” Encryption Decryption public private Different keys Recipient’s public key Recipient’s private key

Public Key Pros and Cons Weakness: Extremely slow Susceptible to “known ciphertext” attack Problem of trusting public key (see later on PKI) Strength Solves problem of passing the key Allows establishment of trust context between parties

Hybrid Encryption (Real World) Launch key for nuclear missile “RedHeat” is... RNG Randomly- Generated symmetric “session” key Symmetric encryption (e.g. DES) *#$fjda^j u539!3t t389E *&\@ 5e%32\^kd Symmetric key encrypted asymmetrically (e.g., RSA) Digital Envelope User’s public key (in certificate) As above, repeated for other recipients or recovery agents Digital Envelope Other recipient’s or agent’s public key (in certificate) in recovery policy

Hybrid Decryption *#$fjda^j u539!3t t389E *&\@ 5e%32\^kd Launch key for nuclear missile “RedHeat” is... Symmetric decryption (e.g. DES) Digital Envelope Asymmetric decryption of “session” key (e.g. RSA) Symmetric “session” key Session key must be decrypted using the recipient’s private key Digital envelope contains “session” key encrypted using recipient’s public key Recipient’s private key

PKI and Signatures

Public Key Distribution Problem We just solved the problem of symmetric key distribution by using public/private keys But… Scott creates a keypair (private/public) and quickly tells the world that the public key he published belongs to Bill People send confidential stuff to Bill Bill does not have the private key to read them… Scott reads Bill’s messages 

Eureka! We need PKI to solve that problem And a few others…

Creating a Digital Signature Message or File 128 bits Message Digest Digital Signature This is a really long message about Bill’s… Jrf843kjfgf*£$&Hdif*7oUsd*&@:<CHDFHSD(** Py75c%bn&*)9|fDe^bDFaq#xzjFr@g5=&nmdFg$5knvMd’rkvegMs” Hash Function (SHA, MD5) Asymmetric Encryption private Calculate a short message digest from even a long input using a one-way message digest function (hash) Signatory’s private key

Verifying a Digital Signature Jrf843kjf gf*£$&Hd if*7oUsd *&@:<CHD FHSD(** Py75c%bn&*) 9|fDe^bDFaq #xzjFr@g5= &nmdFg$5kn vMd’rkvegMs” Asymmetric decryption (e.g. RSA) Everyone has access to trusted public key of the signatory Signatory’s public key Digital Signature ? == ? Are They Same? This is a really long message about Bill’s… Same hash function (e.g. MD5, SHA…) Original Message Py75c%bn&*) 9|fDe^bDFaq #xzjFr@g5= &nmdFg$5kn vMd’rkvegMs”

Word About Smartcards Some smartcards are “dumb”, i.e. they are only a memory chip Not recommended for storing a private key used in a challenge test (verifying identity) Anyway, they are still better than leaving keys on a floppy disk or on the hard drive Cryptographically-enabled smartcards are more expensive but they give much more security Private key is secure and used as needed Additional protection (password, biometrics) is possible Hardware implements some algorithms Self-destruct is possible

Recommendations Don’t be scared of PKI! Set up a test environment to enable hyou to “play” Minimise the scope of your first implementation Read up on CP & CPS Document the purpose and operating procedures of your PKI

Summary Cryptography is a rich and amazingly mature field We all rely on it, everyday, with our lives Know the basics and make good choices avoiding common pitfalls Plan your PKI early Avoid very new and unknown solutions Certificate Policy Certification Practises statement

References Visit www.microsoft.com/security Read sci.crypt (incl. archives) Attend SEC499 for “Encryption in Detail” on Friday at 14.45 in Room 1 For more detail, read: Cryptography: An Introduction, N. Smart, McGraw-Hill, ISBN 0-07-709987-7 Practical Cryptography, N. Ferguson & B. Schneier, Wiley, ISBN 0-471-22357-3 Contemporary Cryptography, R. Oppliger, Artech House, ISBN 1-58053-642-5 (to be published May 2005, see http://www.esecurity.ch/Books/cryptography.html) Applied Cryptography, B. Schneier, John Wiley & Sons, ISBN 0-471-11709-9 Handbook of Applied Cryptography, A.J. Menezes, CRC Press, ISBN 0-8493-8523-7, www.cacr.math.uwaterloo.ca/hac (free PDF) PKI, A. Nash et al., RSA Press, ISBN 0-07-213123-3 Foundations of Cryptography, O. Goldereich, www.eccc.uni-trier.de/eccc-local/ECCC-Books/oded_book_readme.html Cryptography in C and C++, M. Welschenbach, Apress, ISBN 1-893115-95-X (includes code samples CD)

Community Resources Community Resources http://www.microsoft.com/communities/default.mspx Most Valuable Professional (MVP) http://www.microsoft.com/communities/mvp Newsgroups Converse online with Microsoft Newsgroups, including Worldwide http://communities2.microsoft.com/communities /newsgroups/en-us/default.aspx User Groups - Meet and learn with your peers http://www.microsoft.com/communities/usergroups default.mspx

Strategic Consultant, Project Botticelli Ltd Thanks to Rafal Lukawiecki for providing some of the content for this presentation deck – his contact details are as follows… rafal@projectbotticelli.co.uk Strategic Consultant, Project Botticelli Ltd Copyright 2004 © Project Botticelli Ltd & Microsoft Corp. E&OE. For informational purposes only. No warranties of any kind are made and you have to verify all information before relying on it. You can re-use this presentation as long as you read, agree, and follow the guidelines described in the “Comments” field in File/Properties.

Common Algorithms

DES, IDEA, RC2, RC5, Twofish S/MIME, SSL, Kerberos .NET Fx PGP .NET Fx Symmetric DES (Data Encryption Standard) is still the most popular Keys very short: 56 bits Brute-force attack took 3.5 hours on a machine costing US$1m in 1993. Today it is done real-time Triple DES (3DES) more secure, but better options about Just say no, unless value of data is minimal IDEA (International Data Encryption Standard) Deceptively similar to DES, and “not” from NSA 128 bit keys RC2 & RC5 (by R. Rivest) RC2 is older and RC5 newer (1994) - similar to DES and IDEA Blowfish, Twofish B. Schneier’s replacement for DES, followed by Twofish, one of the NIST competition finalists .NET Fx PGP .NET Fx S/MIME, SSL Java

Rijndael (AES) .NET Fx Standard replacement for DES for US government, and, probably for all of us as a result… Winner of the AES (Advanced Encryption Standard) competition run by NIST (National Institute of Standards and Technology in US) in 1997-2000 Comes from Europe (Belgium) by Joan Daemen and Vincent Rijmen. “X-files” stories less likely (unlike DES). Symmetric block-cipher (128, 192 or 256 bits) with variable keys (128, 192 or 256 bits, too) Fast and a lot of good properties, such as good immunity from timing and power (electric) analysis Construction, again, deceptively similar to DES (S-boxes, XORs etc.) but really different

CAST and GOST CAST GOST Canadians Carlisle Adams & Stafford Tavares 64 bit key and 64 bit of data Chose your S-boxes Seems resistant to differential & linear cryptanalysis and only way to break is brute force (but key is a bit short!) GOST Soviet Union’s “version” of DES but with a clearer design and many more repetitions of the process 256 bit key but really 610 bits of secret, so pretty much “tank quality” Backdoor? Who knows…

Careful with Streams! Do NOT use a block cipher in a loop Use a crypto-correct technique for treating streams of data, such as CBC (Cipher Block Chaining) For developers: .NET Framework implements it as ICryptoTransform on a crypto stream with any supported algorithm

RC4 Symmetric PPTP R. Rivest in 1994 Fast, streaming encryption R. Rivest in 1994 Originally secret, but “published” on sci.crypt Related to “one-time pad”, theoretically most secure But! It relies on a really good random number generator And that is the problem Nowadays, we tend to use block ciphers in modes of operation that work for streams PPTP

RSA, DSA, ElGamal, ECC SSL, PGP .NET Fx .NET Fx Asymmetric Very slow and computationally expensive – need a computer Very secure Rivest, Shamir, Adleman – 1978 Popular and well researched Strength in today’s inefficiency to factorise into prime numbers Some worries about key generation process in some implementations DSA (Digital Signature Algorithm) – NSA/NIST thing Only for digital signing, not for encryption Variant of Schnorr and ElGamal sig algorithm ElGamal Relies on complexity of discrete logarithms ECC (Elliptic Curve Cryptography) Really hard maths and topology Improves RSA (and others) SSL, PGP .NET Fx .NET Fx

Quantum Cryptography Method for generating and passing a secret key or a random stream Not for passing the actual data, but that’s irrelevant Polarisation of light (photons) can be detected only in a way that destroys the “direction” (basis) So if someone other than you observes it, you receive nothing useful and you know you were bugged Perfectly doable over up-to-120km dedicated long fibre-optic link Seems pretty perfect, if a bit tedious and slow Practical implementations still use AES/DES etc. for actual encryption Magiq QPN: http://www.magiqtech.com/press/qpn.pdf Don’t confuse it with quantum computing, which won’t be with us for at least another 50 years or so, or maybe longer…

MD5, SHA Hash functions – not encryption at all! Goals: Not reversible: can’t obtain the message from its hash Hash much shorter than original Two messages won’t have the same hash MD5 (R. Rivest) 512 bits hashed into 128 Mathematical model still unknown But it resisted major attacks SHA (Secure Hash Algorithm) US standard based on MD5 S/MIME, SSL, PGP, Digital Sigs .NET Fx .NET Fx

Diffie-Hellman, “SSL”, Certs PGP Methods for key generation and exchange DH is very clever since you always generate a new “key-pair” for each asymmetric session STS, MTI, and certs make it even safer Certs (certificates) are the most common way to exchange public keys Foundation of Public Key Infrastructure (PKI) SSL uses a protocol to exchange keys safely See later Everyone

Cryptanalysis Brute force Frequency analysis Linear cryptanalysis Good for guessing passwords, and some 40-bit symmetric keys (in some cases needed only 27 attempts) Frequency analysis For very simple methods only (US mobiles) Linear cryptanalysis For stronger DES-like, needs 243 plain-cipher pairs Differential cryptanalysis Weaker DES-like, needs from 214 pairs Power and timing analysis Fluctuations in response times or power usage by CPU

Strong Systems It is always a mixture! Changes all the time… Symmetric: AES, min. 128 bits for RC2 & RC5, 3DES, IDEA, carefully analysed RC4, 256 bit better Asymmetric: RSA, ElGamal, Diffie-Hellman (for keys) with minimum 1024 bits (go for the maximum, typically 4096, if you can afford it) Hash: Either MD5 or SHA but with at least 128 bit results, 256 better

Weak Systems Anything with 40-bits (including 128 and 56 bit versions with the remainder “fixed”) Most consider DES as fairly weak algorithm CLIPPER A5 (GSM mobile phones outside US) Vigenère (US mobile phones) Dates from 1585! Unverified certs with no trust Weak certs (as in many “class 1” personal certs)