The Behavior of Gases.

Slides:



Advertisements
Similar presentations
CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY
Advertisements

Gases.
Properties of Gases.
GASES Chapter 14.
Chapter 14 Gas Laws.
“The Behavior of Gases”
Unit 8 Gases.
Introduction to Gases Chemistry2 nd semester. Properties All gases share some physical properties: Pressure (P) Volume (V) Temperature (T) Number of moles.
Chapter 5: GASES Part 2.
The Gas Laws You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Ch. 13: Gases Sec. 13.1: The Gas Laws.
GASES Chapter 14.
Honors Chemistry Chapter 5 Gases.
Units of Measure for Gases
Any Gas….. 4 Uniformly fills any container 4 Mixes completely with any other gas 4 Exerts pressure on its surroundings.
Gases doing all of these things!
Gases Chapters 12.1 and 13.
Gas Laws Chapter 14. Properties of Gases  Gases are easily compressed because of the space between the particles in the gas.
Chapter 10 PHYSICAL CHARACTERISTICS OF GASES
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Gas Laws.
Ch. 5 Gases. Ch. 5 Topics Kinetic Molecular Theory and Gases Ideal vs. Real Gases What conditions are ideal for gases? PV=nRT PV=(m/MM)RT Know how to.
Energy and Gases Kinetic energy: is the energy of motion. Potential Energy: energy of Position or stored energy Exothermic –energy is released by the substance.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass.
Gas Notes I. Let’s look at some of the Nature of Gases: 1. Expansion – gases do NOT have a definite shape or volume. 2. Fluidity – gas particles glide.
GAS LAWS. Behavior of Gases Gases can expand to fill their container Gases can be compressed –Because of the space between gas particles Compressibility:
Kinetic Molecular Theory 1.Based on the idea that particles are always in motion. 2.Explains the properties of solids, liquids, and gases.
Chapter 11 Gases.
Aim: What are the properties of Gases?. Compressibility Compressibility is measure of how much volume decreases under increased pressure. Gases are easily.
Gases.
Gas Laws.
Gas Laws Chapter 5. Pressure Force per unit area Measured in Atmospheres (atm) Mm of Hg = Torr Pascals or kiloPascals (Pa or kPa)
1 IB Topic 1: Quantitative Chemistry 1.4: Mass Relationships in Chemical Reactions  Solve problems involving the relationship between temperature,
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
The Behavior of Gases Chapter 14.
The Property of Gases – Kinetic Molecular Theory And Pressure.
The Behavior of Gases Ch. 12.
Gases.  State the kinetic-molecular theory of matter, and describe how it explains certain properties of matter.  List the five assumptions of the kinetic-
Gases Chapter 13. Kinetic-Molecular Theory of Matter Model for gases Explains why gases behave the way that they do Based on the idea that particles of.
Gases Dr. Chin Chu River Dell Regional High School
Gas Notes I. Let’s look at some of the Nature of Gases: 1. Expansion – gases do NOT have a definite shape or volume. 2. Fluidity – gas particles glide.
Gases Chang Chapter 5. Chapter 5 Outline Gas Characteristics Pressure The Gas Laws Density and Molar Mass of a Gas Dalton’s Law of Partial Pressure Kinetic.
Gases Ch.10 and 11. Kinetic-Molecular Theory 1.Gases consist of very small particles that are far apart Most particles are molecules Volume of particles.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Chapter 10: Physical Characteristics of Gases
Gases Unit 6. Kinetic Molecular Theory  Kinetic energy is the energy an object has due to its motion.  Faster object moves = higher kinetic energy 
Gases: Chapter – Characteristics of Gases Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas.
Chapter 14 The Behavior of Gases.
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Ch. 14 The Behavior of Gases PROPERTIES OF GASES.
States of Matter and Gases Unit 9. The States of Matter Solid: material has a definite shape and definite volume Solid: material has a definite shape.
Gases. Kinetic Theory of Gases Explains Gas behavior: 4 parts: 1) Gas particles do not attract or repel each other (no I.M. forces).
States of Matter and Gases Unit 8. The States of Matter Solid: material has a definite shape and definite volume Solid: material has a definite shape.
Jennie L. Borders. Section 14.1 – Properties of Gases Compressibility is a measure of how much the volume of matter decreases under pressure. Gases are.
Chapter 13 Calculating Gases 1 Section 12.1 Pressure + Temperature conversions, Dalton’s + Graham’s Laws Section 13.1 The Gas Laws Section 13.2 The Ideal.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
Chapter 5 Gases. Air Pressure & Shallow Wells Gases Are mostly empty space Occupy containers uniformly and completely The densities of gases are much.
Ch. 12 The Behavior of Gases Ch The Properties of Gases Ch Factors Affecting Gas Pressure Ch The Gas Laws Ch Ideal Gases Ch
Chemistry Chapter 5 Gases Dr. Daniel Schuerch. Gas Pressure Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles.
1 Behavior of Gases Ch Why do air bags work? Which would you rather hit the dashboard or an air bag? Why? Which would you rather hit the dashboard.
Gases Boyle’s Law. As the volume of a gas increases, the pressure decreases. –Temperature remains constant.
Collisions with gas particles are elastic.
V. Combined and Ideal Gas Law
Chapter 14 Gas Behavior.
How does a gas differ from a solid and a liquid?
Chapter 13 Kinetic Theory (Kinetikos- “Moving”)
Gases.
Presentation transcript:

The Behavior of Gases

Review of KMT of Gases Assumptions Gases consist of tiny particles far apart from one another Collision between gas particles are elastic, with no loss of KE Gas particles are in constant, rapid motion. No forces of attraction or repulsion exist between gas particles Average KE of particles depends on absolute temperature of the gas

Review of Pressure Pressure is force per unit area SI unit of force is the Newton (N) SI unit of pressure is the pascal 1Pa = 1N/m2

14.1 Properties of Gases Compressibility Factors affecting Gas Pressure Amount of gas (n) number of particles, i.e. moles of gas Volume (V) space occupied by the gas Temperature (T, absolute temperature) Recall TK = TC + 273

14.2 The Gas Laws The gas laws describe the relationship of the 4 important variables that describe gas behavior Pressure (P) Moles (n) Volume (V) Temperature (T in Kelvins)

Boyle’s Law: Pressure & Volume Volume is inversely related to Pressure When Pressure increases, Volume decreases If temperature and moles are constant

Practice Problems page 419 Given a volume of 2.50 L, if the pressure of N2O (an anesthetic) decreases from 105 kPa to 40.5 kPa, what is its new volume? (assume n & T are constant) If 4.00 L of NH3 at 205 kPa is allowed to expand to 12.0L, what is the new pressure if T and n remain constant?

Charles’ Law: Volume and Temperature Volume is directly proportional to absolute temperature When temperature of an enclosed gas increases, its volume increases If pressure is constant

Sample Problems page 421 If a sample of CO2 occupies a volume of 6.80 L at 325ºC, what will its volume be at 25ºC if the pressure does not change? Exactly 5.00 L of air at -50.0ºC is warmed to 100.0ºC. What is the new volume if pressure remains constant?

Gay-Lussac Law: Pressure and Temperature Pressure is directly proportional to absolute temperature As the temperature of an enclosed gas increases, its pressure increases if volume is constant

Gay-Lussac Law

Sample Problems page 423 A sample of N2 gas has a pressure of 6.58 kPa at 539K. If the volume does not change, what will the pressure be at 211K? The pressure in a car tire is 198 kPa at 27ºC. After a long drive, the pressure is 225 kPa. What is the temperature of the air in the tire?

The Combined Gas Law: Pressure, Volume and Temperature Combines Boyle’s, Charles’, and Gay-Lussac’s Laws Relates pressure, volume and temperature

Sample Problems page 424 A gas at 155 kPa and 25ºC has an initial volume of 1.00L. The pressure of the gas increases to 605 kPa as the temperature is raised to 125ºC. What is the new volume? A 5.00 L sample of air has a pressure of 107 kPa at 50.0ºC. If the temperature is raised to 102ºC and the volume expands to 7.00 L, what will the new pressure be?

14.3 Ideal Gases Gases at ordinary temperatures and pressures comply with the assumptions of the KMT of gases These are called ideal gases Gases at extremely low temperatures and/or extremely high pressures do not These are called real gases

Avagadro’s Law: Moles & Volume The volume of a confined gas is directly proportional to moles of a gas If the moles of gas increases, the volume of the gas increases If temperature and pressure are constant n = kV n/V = k n1/V1 = n2/V2

Practice Problem A cylinder of gas with a moveable piston contains 2.00 mol N2 with a volume of 11.0 L. What is the new volume if 1.50 mol of CO2 is injected into the cylinder? Assume that pressure and temperature are unchanged and that the N2 and CO2 do not react with one another. 19.3 L

Molar Volume of Gases: Remember This! At STP, the standard molar volume of any gas is 22.4L One mole of a gas has a volume of 22.4L at STP Use this as a conversion factor when solving stoichiometry problems involving gases

Practice Problems A chemical reaction produces 0.0680 mol of oxygen gas. What is the volume of the gas at STP? A reaction produced 98.0 mL of SO2 gas at STP. a. How many moles of SO2 were produced? b. What was the mass in grams of the gas? c. What is the density of the gas?

14.3 Ideal Gas Law: Pressure, Volume, Moles, Temperature A single law that relates pressure, volume, moles, and temperature of a gas PV=nRT n is number of moles of gas R is the ideal gas constant Value of R varies depending on units used for pressure and volume

The Ideal Gas Constant

Sample Problems A rigid hollow sphere containing 685 L He has a temperature of 621K and a pressure of 1.89 x 103 kPa. How many moles of He are in the sphere? (251 mol) What volume will 12.0 g of methane gas (CH4) occupy at a temperature of 25ºC and pressure of 0.52 atm? A gaseous product of a reaction is collected in a 30.0 L container at 25ºC. The measured pressure of the gas was 150 kPa. The mass of gas produced was about 116 g. What is the molar mass of the gas?

Ideal Gases and Real Gases Ideal gases are real gases which comply with the ideal gas equation Real gases deviate from the ideal gas equation at low temperatures and high pressures This is because the assumptions of KMT are no longer valid at low T and high P

Real Gases Deviate from the Ideal

14.4 Gas Mixtures and Movements Very often gases are mixtures Pure substances Homogeneous mixtures Solutions The total pressure of a mixture of gases is the sum of the pressures of each individual gas (component gas) in the mixture

Dalton’s Law of Partial Pressures

Dalton’s Law of Partial Pressures The total pressure of a mixture of gases is the sum of the partial pressure of each component of the mixture Partial pressure is the pressure of each gas within a mixture of gases

Example of Dalton’s Law If you mix 2 moles O2 at 0.12 atm with 2 moles of N2 at 0.12 atm, the total pressure is the sum of the partial pressures. Do Problem 32, p. 434

Mole Fraction can be used to calculate partial pressures The mole fraction of a gas is the moles of a gas divided by the total moles of gas in a mixture X = moles x/ total moles In a mixture of 200 moles of O2 and 500 moles N2, what is the mole fraction of O2? XO2 = 200 mol O2/700 mol = 0.29 Suppose this mixture had a total pressure of 600 kPa. What is the PO2? PO2 = XO2 · Ptotal = 0.29 x 600 kPa = 174 kPa

Graham’s Law of Effusion Diffusion Movement of molecules from an area of higher concentration to lower concentration

Effusion Effusion Rate of effusion Movement of gas molecules through a pinhole Rate of effusion How much gas effuses per second Sometimes velocity is used

Graham’s Law of Effusion At a given temperature, lower mass molecules diffuse and effuse faster than greater mass molecules This is because they have the same KE KE = ½ mv2